
diagnostics

Article

A Multi-Center, Multi-Vendor Study to Evaluate the
Generalizability of a Radiomics Model for Classifying Prostate
cancer: High Grade vs. Low Grade

Jose M. Castillo T. 1,* , Martijn P. A. Starmans 1 , Muhammad Arif 1, Wiro J. Niessen 1,2, Stefan Klein 1 ,
Chris H. Bangma 3, Ivo G. Schoots 1 and Jifke F. Veenland 1,4

����������
�������

Citation: Castillo T., J.M.; Starmans,

M.P.A.; Arif, M.; Niessen, W.J.; Klein,

S.; Bangma, C.H.; Schoots, I.G.;

Veenland, J.F. A Multi-Center,

Multi-Vendor Study to Evaluate the

Generalizability of a Radiomics

Model for Classifying Prostate cancer:

High Grade vs. Low Grade.

Diagnostics 2021, 11, 369.

https://doi.org/10.3390/

diagnostics11020369

Academic Editors: Martin

Andreas Røder and John

Thomas Helgstrand

Received: 15 December 2020

Accepted: 19 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
m.starmans@erasmusmc.nl (M.P.A.S.); a.muhammad@erasmusmc.nl (M.A.);
w.niessen@erasmusmc.nl (W.J.N.); s.klein@earasmusmc.nl (S.K.); i.schoots@erasmusmc.nl (I.G.S.);
j.veenland@erasmusmc.nl (J.F.V.)

2 Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
3 Department of Urology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; c.h.bangma@erasmusmc.nl
4 Department of Medical Informatics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
* Correspondence: j.castillotovar@erasmusmc.nl

Abstract: Radiomics applied in MRI has shown promising results in classifying prostate cancer
lesions. However, many papers describe single-center studies without external validation. The issues
of using radiomics models on unseen data have not yet been sufficiently addressed. The aim of this
study is to evaluate the generalizability of radiomics models for prostate cancer classification and to
compare the performance of these models to the performance of radiologists. Multiparametric MRI,
photographs and histology of radical prostatectomy specimens, and pathology reports of 107 patients
were obtained from three healthcare centers in the Netherlands. By spatially correlating the MRI
with histology, 204 lesions were identified. For each lesion, radiomics features were extracted from
the MRI data. Radiomics models for discriminating high-grade (Gleason score ≥ 7) versus low-grade
lesions were automatically generated using open-source machine learning software. The performance
was tested both in a single-center setting through cross-validation and in a multi-center setting using
the two unseen datasets as external validation. For comparison with clinical practice, a multi-center
classifier was tested and compared with the Prostate Imaging Reporting and Data System version 2
(PIRADS v2) scoring performed by two expert radiologists. The three single-center models obtained
a mean AUC of 0.75, which decreased to 0.54 when the model was applied to the external data, the
radiologists obtained a mean AUC of 0.46. In the multi-center setting, the radiomics model obtained
a mean AUC of 0.75 while the radiologists obtained a mean AUC of 0.47 on the same subset. While
radiomics models have a decent performance when tested on data from the same center(s), they may
show a significant drop in performance when applied to external data. On a multi-center dataset our
radiomics model outperformed the radiologists, and thus, may represent a more accurate alternative
for malignancy prediction.

Keywords: prostate carcinoma; radiomics; machine learning; MRI

1. Introduction

Prostate cancer (PCa) is the most common malignancy and second leading cause
of cancer-related death in men [1]. From all patients diagnosed with PCa, those with
low-grade lesions might be candidates for active surveillance, whereas patients with high-
grade PCa require treatment [2]. The gold standard for PCa assessment in current clinical
practice is histopathological verification of biopsy cores [2]. These cores are evaluated by a
pathologist and assigned a grade using the Gleason score (GS). However, this procedure
has shown to be susceptible to under-diagnosis of high-grade PCa and over-diagnosis of
low grade PCa [3].
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Multi-parametric magnetic resonance imaging (mpMRI) has received increasing in-
terest for diagnosing, monitoring and treatment follow up for PCa. MpMRI allows non-
invasive visualization of the whole prostatic tissue and extraction of quantitative param-
eters such as tissue density and permeability. To evaluate mpMRI, radiologists use the
Prostate Imaging Reporting and Data System (PIRADS) v2, with a grading scale from one
(highly unlikely to be clinically significant prostate cancer) to five (highly likely to be clini-
cally significant prostate cancer) [4]. Nevertheless, mpMRI interpretation is challenging
and prone to inter- and intra-reader variability among expert radiologists [3].

By extracting multiple imaging features, radiomics has the potential to evaluate the
mpMRI data in a more objective way. In the context of PCa, the literature has shown
evidence of the potential of radiomics in classifying PCa lesions [5–8], with promising
performances in terms of sensitivity and specificity [9]. Nevertheless, current studies on
prostate MRI radiomics still lack the quality required to allow their introduction in clinical
practice [9,10]. This is due to the fact that most of the radiomics studies validated their
approach by splitting their original dataset in training and validation subsets, while only a
few studies performed a validation using an external set [11–13]. The latter evaluation is
more relevant for a clinical context, where new data can present variations that were not
taken into account when the original model was created. Three sources of variations can
be identified: at the patient level, at the level of the MRI scanner, and at the level of the
clinician. At the patient level: a model created with patient data collected in a specialized
treatment centre, will differ from a model based on data collected in a hospital with a
surveillance function. Magnetic resonance (MR) images vary between vendors and between
scanner types from the same vendor, even if the same acquisition parameters are used.
Current evidence shows that is possible to overcome these differences by applying feature
harmonization techniques [14]. These techniques aim to estimate the statistical differences
between imaging features computed from different data sets and apply a correction for it. To
our knowledge there is no scientific evidence reporting the usage of feature harmonization
in the context of PCa classification. At the clinician level: the pathologist reports, which are
used as ground truth for the model, are based on the visual Gleason grading of pathologists,
who are prone to considerable inter-observer variation [15,16]. Therefore, the question
arises what performance can be expected when testing radiomics models on unseen multi-
center-multivendor data: how generalizable are radiomics model in the context of PCa? The
number of studies addressing generalizability is limited. To our knowledge, few studies
tested their model’s generalizability for PCa detection regarding tumor aggressiveness
using multiple scanners [17–19]. Only a few studies have validated their methods using
external datasets for PCa tumor grade prediction [9]. When radiomics models are being
considered as decision support tools for clinical practice, the generalizability issue should
be addressed.

The main contribution of this study is two-fold. First, we assessed the generalizability
of a radiomics approach for classifying PCa in a multi-center, multivendor setting. Second,
in the same setting we compared the classification performance of radiologists to the
performance of our radiomics model.

2. Materials and Methods

Our patient cohort was obtained from three healthcare centers in the Netherlands in
the context of the Prostate Cancer Molecular Medicine project (PCMM), in Table 1 some of
the clinical variables of this set are summarized. A Kruskal–Wallis test was performed to
check whether the median of the GS distribution, volume, and prostatic specific antigen
(PSA) of the included data sets were comparable.
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Table 1. Prostate Cancer Molecular Medicine (PCMM) data set clinical variables and lesions charac-
teristics. PIRADS grading performed by radiologist 1 (R1) and 2(R2). Age of patients for data sets B
and C was not available (NA). PZ: Peripheral zone. TZ: transition zone. AFS: anterior fibromuscular
stroma. IQR: interquartile range.

Prostate Cancer Molecular Medicine Data set Clinical Variables

Center A B C

Number of Patients 29 38 40
Age at Diagnosis (mean ± std years) 64 ± 7 NA NA

PSA before treatment (mean ± std ng/mL) 12 ± 10 9 ± 5 10 ± 8

Lesions Characteristics

Number of lesions 204
Lesion location

PZ 33 59 45
TZ 15 23 26

AFS NA 2 1
Lesion volume (median and IQR mL) 1.6 (0.2–1.8) 1.4 (0.1–1.5) 0.8 (0.2–1.1)

Radiologist PIRADS grading R1 R2

I 0 4
II 16 9
III 21 36
IV 33 34
V 43 61

Total 113 144

The data usage of this study was approved by the medical ethics review committee of
Erasmus MC under the number NL32105.078.10. In this PCMM-project, the mpMRI and
pathology data of men with localized PCa who were scheduled for prostatectomy were
prospectively collected from 2011 to 2014. In this study, we will refer to the data from the
respective centers as data set A, B and C. The data of each center were visually graded by a
radiologist and a pathologist working at that center. In total we included 107 patients for
whom MRI, pathology images and reports were available. The distribution was as follows:
A = 29, B = 38 and C = 40, the details regarding the MRI scanners and acquisition parameters
of each set are described in Appendix A. The dataset shows considerable variability, with
images acquired with scanners from three different vendors, using various voxel sizes
and b values for the diffusion weighted sequences. In deriving our radiomics models we
included the T2-weighted (T2w) and the diffusion weighted imaging (DWI) sequences and
the apparent diffusion coefficient maps (ADC) derived from the DWI images.

All 107 patients had their prostate surgically removed. After the prostatectomy, the
prostate was cut into 3 mm thick slices. Of the top of each slice, a photograph was taken,
and 4µm coupes were cut and stained with H&E. Based on the H&E, the pathologist
marked the areas with cancerous tissue on the photographs and assigned a GS to each
tumor region. In Figure 1 the number of lesions per GS found in each set is summarized.
We grouped lesions with a GS ≤ 6 as low-grade tumors and lesions with a GS ≥ 7 as
high-grade tumors. Out of the 107 patients, 204 lesions in total were processed, 92 (45%)
low-grade and 112 (55%) high-grade. The methods used to correlate the lesions found in
the pathology with MRI are explained in the following section.
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volume. Subsequently, the translation in slice-direction was fine-tuned while inspecting 
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Figure 1. Distribution of Gleason grading of identified lesions at radical prostatectomy specimen of three different centers.
The number of lesions per group is shown in white.

2.1. Ground Truth Construction: Pathology-MRI Correlation

A mask of identified lesions based on microscopy analysis (H&E staining) was man-
ually drawn by a pathologist on the prostatectomy specimens’ photos. Using in house
software implemented in Mevislab (v-2.2.1, Germany) [20], the macroscopy images of
the prostatectomy specimen were manually registered and stacked to generate a prostate
volume to enable the registration with MRI. Then, based on the prostate borders, prostate
masks were manually drawn on the MR and macroscopy images. Afterwards, these two
masks were manually aligned in 3D by rotation, translation, and scaling of the pathology
volume. Subsequently, the translation in slice-direction was fine-tuned while inspecting
the pathology and the corresponding T2w slices. As the last step, the lesion segmentation
from the pathology volume was overlaid on the T2w volume.

2.2. Image Pre-Processing.

In order to address the variation in image resolution between and within data sets,
the MR images were resampled to a voxel grid of 0.27 mm × 0.27 mm × 3 mm, which was
the spacing used in the largest proportion (36%) of the T2w images.

2.3. Radiomics Generalizability Evaluation

To assess the generalizability of our radiomics models, we used the experimental setup
as shown in Figure 2. Image data from a single center was used to train a radiomics classifier
for each center. On this training set, an 100× internal random-split cross-validation was
used to assess the single center performance. Finally, the model was evaluated using the
other two sets to assess the generalizability; this procedure was repeated with each set.
The details regarding the development of the radiomics classifiers are explained in the
following section.
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Figure 2. Scheme of the generalization experiment setting. In this example dataset A is used to develop a model. The model
is tested on the other two sets (B and C).
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2.4. Radiomics Model Development

To generate the radiomics classifiers for each data set, we used the open-source Work-
flow for Optimal Radiomics Classification (v-3.3.2, Rotterdam, The Netherlands,) platform
(WORC) with the default settings [21] and another setting including feature harmoniza-
tion with ComBat [22]. WORC performs an automatic search amongst a wide variety of
algorithms and their corresponding parameters to determine the optimal combination
that maximizes the prediction performance on the training set, a schematic overview of
the method is shown in Figure 3. The workflow starts with the user defining a region
of interest (ROI) from the image, which in our case was the delineation obtained by the
pathology–MRI correlation. Within these tumor masks, features quantifying intensity,
shape, texture and orientation were extracted from the T2w, ADC and the highest b-value
image available from the DWI images. Following feature extraction, a decision model was
created, which in WORC consist of several steps, such as feature selection, oversampling
and machine learning methods. WORC automatically optimizes the radiomics pipeline:
during each iteration WORC generates 100,000 workflows by using different combinations
of methods and parameters. At the end of each cross validation, the 50 best performing
solutions were combined in an ensemble as a single classification model. The final ensemble
of 50 classifiers is the resulting radiomics model, the performance of which is evaluated on
the independent test set (external evaluation). Feature selection was done to select the most
predictive features through enabling/disabling entire families of features (e.g., shape, local
binary patterns, texture based on grey-level co-occurrence matrices). The code utilized for
these experiments is available online in a GitHub repository [23].
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Figure 3. (1) The magnetic resonance sequences to be used in the model are defined. (2) The lesions from the pathology are
copied and registered to the T2w sequence. (3) The diffusion weighted imaging (DWI) and apparent diffusion coefficient
(ADC) are resampled and registered to the T2w. (4) Features are extracted from the T2w, DWI and ADC. (5) A radiomics
model is created from the features, using an ensemble of the best 50 workflows from 100,000 candidate workflows, where
the workflows are different combinations of the different classifiers.

2.5. Radiomics Classifier Evaluation

The internal evaluation of the model was performed by using a 100× random-split
cross validation: First, the data set was split into 80% for training and 20% for testing. After
this, 20% of the training set was used as validation set. This validation set was used in each
training iteration to select the best parameters in order to optimize the prediction accuracy.
The remaining 20% was used for performance evaluation: area under the curve (AUC),
receiver operating characteristic (ROC) curve, sensitivity, and specificity. The high-grade
tumors were considered the positive class. To compute the 95% confidence intervals (CI)
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in the cross-validation experiment, we used the corrected resampled t-test [24]. ROC
confidence bands were constructed using fixed-width bands [25].

To analyze the impact of having multiple lesions from the same patient, we performed
the external evaluation both at the lesion and patient level. At the patient level, for each
patient only the highest grade lesion was taken into account.

2.6. Comparison of Our Radiomics Model with the Clinical Assessment using PIRADS v2

To compare the classification performance of a multi-center radiomics model with the
clinical assessment using the PIRADS v2 score, a test set was evaluated by both radiomics
and the radiologist, see Figure 4. The PIRADS scoring of the lesions was done by two
radiologists with 4 years and 10 years of experience, respectively, from of the partaking
centers A and B, fully blinded from histopathology results. The lesions graded as having a
PIRADS ≥ 3 were considered positive for high-grade PCa and the lesions with a score ≤ 2
as negative for high-grade PCa.
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Figure 4. Scheme of the comparison experiment of our multi-center radiomics model with the evaluation by the radiologist.
A randomly selected set of patients in ABC was set apart as test set (D), the rest of the data (ABC*) was used to develop the
multi-center radiomics model.

For this experiment, in order to avoid a bias towards a single center, we created a test
set (D) by randomly selecting 20% of the data from each of the three centers. From this set,
the lesions that were not detected by one of the two radiologists were removed from the
study since our goal was to compare the classification performance, not the detection rate.
Subsequently, the remaining patient data (ABC*) was used to train a radiomics model to
classify the patients in set D. The end performance for either radiologist and the radiomics
model was computed on patient level classification.

3. Results

Statistical analysis of clinical variables:
The median of the Gleason Score (H = 4.63, p = 0.09), the lesion volume (H = 5.85,

p = 0.06) and PSA (H = 1.99, p = 0.36) were similar for the three data sets.
Radiomics model generalizability:
Table 2 shows the results for the generalizability test. Overall, it can be seen that

even though reasonable performances in terms of AUC (mean = 0.75) were obtained
from the internal cross-validations, when the models were tested on the other data sets,
the performances dropped considerably (mean AUC = 0.54). The inclusion of feature
harmonization with ComBat did not improve the performance of the radiomics models.
The performance metrics on the external validation sets were comparable when evaluated
lesion and patient wise. Meanwhile, radiologists’ performance (mean AUC = 0.47) shows
high sensitivity with a low specificity.
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Table 2. Generalization study results. Internal: internal evaluation was performed using a 100×
random-split cross-validation, reported with confidence interval. External: by training in one dataset,
testing on the two remaining datasets. LC: lesion level classification. PC: patient level classification.
AUC: area under the curve. CH: Test result using ComBat feature harmonization. R1 and R2:
radiologist 1 and 2.

Model Internal External LC External CH External PC R1 and R2

Trained on A A B and C

AUC 0.75
(0.58–0.92) 0.43 0.49 0.55 0.44

Sensitivity 0.91
(0.82–1.00) 0.80 0.78 0.81 0.80

Specificity 0.30
(0.03–0.55) 0.22 0.27 0.21 0.06

Trained on B B A and C

AUC 0.69
(0.57–0.81) 0.60 0.57 0.55 0.50

Sensitivity 0.64
(0.47–0.80) 0.43 0.74 0.86 0.88

Specificity 0.67
(0.50–0.83) 0.62 0.38 0.25 0.13

Trained on C C A and B

AUC 0.80
(0.68–0.92) 0.60 0.62 0.65 0.44

Sensitivity 0.74
(0.66–0.86) 0.52 0.51 0.48 0.69

Specificity 0.66
(0.50–0.82) 0.63 0.69 0.63 0.19

Comparison of Our Radiomics Model with the Clinical Assessment using PIRADS v2

The resulting test set was composed of 16 patients with high-grade lesions and eight
patients with low-grade lesions. Table 3 presents the results of the classification perfor-
mance for the internal cross-validation and the performance on the test set (ABC*) for the
model and the two radiologists. It can be seen that the radiomics model outperformed
(AUC = 0.75) the radiologist classification with the PIRADS score (AUC of 0.50 and 0.44).
Radiologists achieved a decent sensitivity (0.76 and 0.88), but near-zero specificity (0.25 and
0.0), whereas the radiomics model achieved a sensitivity of 0.88 and a specificity of 0.63.

Table 3. Performance comparison of the multi-center radiomics model with the PIRADS score
performed by two radiologists. Internal: Internal cross validation results reported with confidence
intervals. AUC: area under the curve. Model: results from the multi-center model for the unseen
data. R1 and R2: radiologist 1 and 2, respectively.

Metrics Internal Model R1 R2

AUC 0.72 (0.64–0.79) 0.75 0.50 0.44
Sensitivity 0.76 (0.66–0.89) 0.88 0.76 0.88
Specificity 0.55 (0.44–0.66) 0.63 0.25 0.00

4. Discussion

The expanding usage of prostate MRI for PCa diagnosis has brought an increased
interest in radiomics research for tumor classification. As a result, many approaches have
been proposed, and promising results have been presented, thus raising the opportunity of
using these models in daily clinical workflow. However, there is limited evidence regarding
the performance of these models with unseen data in a new clinical contexts, for instance
with MR scanners from different vendors and/or grading by different pathologists and/or
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different patient profiles. Investigating how these changes affect radiomics performance is
required prior to applying these models in a clinical setting.

In this study we developed radiomics classifiers starting from three independent sets
and evaluated the performance on the unseen data of the other centers. To compensate
for the differences between data sets and reduce the negative effects on performance
that these differences might have, resampled all the images in our experiments to the
same voxel size, and used the same method to correlate the pathology data to the MR
data. Furthermore, we applied techniques such as normalization and class unbalance
correction. While obtaining a decent performance working with data from a single center,
our results showed a substantial decline in performance when evaluating the radiomics
models on external data. Thus, since an internal validation on a single-center dataset is not
representative of external performance, it is advisable to carry out external validations to
have a realistic estimation of predictive power.

The decline in performance is most probably related to several factors. One important
factor affecting the feature computation is the dependency of the radiomics features on MR
scanning parameters [26]. It has been shown that image normalization applied with variety
of approaches or pre-filtering cannot overcome the scan-feature dependency problem [27].
Recent literature shows evidence that it is possible to overcome the scanner-feature depen-
dency issue by applying feature harmonization techniques such as ComBat [22]. In our
experiments, we applied feature harmonization using ComBat, however the inclusion of
this technique did not improve our results while testing on the external sets.

Another factor is that the delineations on the pathology data were carried out by
different pathologists working at the different centers. These delineations were transferred
to the MRI, but the delineation is a factor that influences the feature computation [28],
compromising the likeness of the features computed from different datasets. In clinical
practice, the delineation of lesions in MRI is mostly performed by a single clinician, which
makes it unfeasible to test feature robustness for several delineations. Furthermore, manual
delineation by specialists is time consuming and potentially subject to observer variability.
Utilizing either assisted or fully automatic segmentation methods available [29,30] for the
prostate and PCa lesions could improve feature computation consistency, important for
radiomics approaches, and positively impact the model generalizability.

Various studies have assessed the use of radiomics in PCa classification on mpMRI [9].
To our knowledge, this is the first study to specifically address the generalizability of
radiomics models in the context of PCa classification. Our study consisted of multi-centric
data sets: image data from multiple vendors and multiple scanners from the same vendor,
two different radiologists diagnosing the patients, three different pathology departments
grading histology slices of prostatectomies as ground truth. There are studies in which
one factor is varied, e.g., the study published by Dinh et al. [31]. In their study they
developed a model specifically for peripheral zone PCa detection, maintaining the model’s
performance between two MR scanners belonging to different vendors. However, in their
experiments the data were acquired from the same center, evaluated, and processed by the
same radiologists and pathologists. This might have affected positively the performance of
their method.

When comparing our radiomics model to the PIRADS v2 scoring by radiologists, our
results show that the radiologists achieved high sensitivity at the cost of a low specificity,
while our model increased specificity substantially. This high sensitivity with PIRADS
v2 may translate in clinical practice in overdiagnosis and overtreatment. A radiomics
model may not only provide a more objective quantitative support tool to recommend
surveillance for those cases where treatment may not instantly be required, but should also
maintain a high sensitivity for those cases with aggressive PCa. However, it is important
to take into account the data that the radiomics model was developed on, and the setting
the model will be applied in. In other words, the safe utilization of a radiomics model
in the clinic is feasible, as long as the population on which it is applied, holds similar
characteristics to the population used to develop the model.
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Our study has some limitations. First, our ground truth tumor grading is based on
one pathologist per center, which can cause discrepancies in lesion delineations and grad-
ing. Having a consensus ground truth could have positively impacted our performance.
However, this limitation represents current clinical practice, where the reader agreement
between pathologists is between 70–80% [15,16].

Secondly, the number of patients included per medical center is limited. However, the
total number of patients in our study is higher than the average value of 80 patients found
in similar radiomics studies [9]. Thirdly, the clinical assessment was performed using the
PIRADS classification v2.0 because v2.1 was not available at the moment of the readings.

Finally, we did not include clinical variables or epidemiological factors in our model.
This information plays a role in clinical decision making, therefore, including this informa-
tion may have a positive impact on the end performance in a multi-center and multi-vendor
setting. Although, clinical patient information such as the level of PSA, the patient risk
group and the outcome of the digital rectal examination were not available for a substantial
number of patients which represented an obstacle to include these variables.

Despite the previous limitations, our study contributes to the field of PCa classification
using radiomics by: (1) being the first study with the generalizability of PCa classification
radiomics models as main focus; (2) making our scientific code available in a public
repository. As regards this last point, we would like to invite the scientific community to
test this code on their own data sets and so promote discussions and future collaborations.

Additionally, we would like to make some recommendations for future work: when
developing a generalizable radiomics model for PCa classification the data should represent
the variation present in the clinical practice with data of several centers with various
pathologists and radiologists, and multiple MRI scanners from multiple vendors. The
validation of the model should be performed in a prospective cohort.

5. Conclusions

In this paper we assessed the generalizability of radiomics models in the context of
PCa grading. When limited to a specific center or, e.g., to a specific scanner or specific
setting, these models perform well and may represent a valuable tool to differentiate low-
grade from high grade tumors. However, when applying radiomics on data from different
centers and/or scanners, a considerable drop in performance can be expected, making
these models less reliable in this context.

To become clinical viable and support clinical decision making, training and validation
of radiomics models should be performed in multi-center scenarios with data representative
of the population on which the model will be applied.
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Appendix A

Table 1. Table describing scanners characteristics at the three clinical sites. GE: General Electric. T: Tesla. T2: T2-weighted
sequence DWI: Diffusion weighted imaging.

Center. Vendor Model Magnetic Field
(Tesla). #Patients Sequence Voxel Size (mm) B-Values Endorectal

Coil

A.
GE

Medical
Systems.

MR750. 3T. 21. T2. 0.37 × 0.37 × 3.00
. . . No . . .

DWI 1.09 × 1.09 × 4.00 50/400/800

GE
Medical
Systems

MR450 1.5T 3 T2 0.47 × 0.47 × 3.00 No

DWI 1.25 × 1.25 × 4.00 100/500/1000

SIEMENS Avanto 1.5T 5 T2 0.70 × 0.70 × 3.00 No
DWI 1.85 × 1.85 × 6.00 50/400/600

B Philips
Healthcare Achieva 3T 38 T2 0.27 × 0.27 × 3.00 Yes

DWI 1.03 × 1.03 × 3.00 150/300/450/600/750

C SIEMENS TrioTim 3T 17 T2 0.63 × 0.63 × 3.00
DWI 2.00 × 2.00 × 4.00 50/500/800 No

Skyra 3T 23
T2 0.60 × 0.60 × 3.00

DWI 2.00 × 2.00 × 4.00 50/500/800 No

Appendix B. Radiomics Features Extraction

This supplemental material is similar to (Timbergen et al., 2020; Vos et al., 2019), but
details relevant for the current study are highlighted.

A total of 540 radiomics features were used in this study. All features were extracted
using Workflow for Optimal Radiomics Classification (WORC) (Starmans, Van der Voort,
Phil, & Klein, 2018), which internally uses the PREDICT (van der Voort & Starmans, 2018)
and PyRadiomics (Van Griethuysen et al., 2017) feature extraction toolboxes. For details on
the mathematical formulation of the features, we refer the reader to (Zwanenburg et al.,
2020). More details on the extracted features can be found in the documentation of the
respective toolboxes, mainly the WORC documentation (Starmans, 2018).

For CT scans, the images are by default not normalized as the scans already have a
fixed unit and scale (i.e., Hounsfield), contrary to MRI. The images were not resampled, as
this would result in interpolation errors. The code to extract the features has been published
open-source (Starmans, 2020).

The features can be divided in several groups. Thirteen intensity features were
extracted using the histogram of all intensity values within the ROIs and included several
first-order statistics such as the mean, standard deviation and kurtosis. Thirty-five shape
features were extracted based only on the ROI, i.e., not using the image, and these included
shape descriptions, such as the volume, compactness and circular variance. These describe
the morphological properties of the lesion. Nine orientation features were used, describing
the orientation of the ROI, i.e., not using the image. Lastly, 483 texture features were
extracted using Gabor filters (144 features), Laplacian of Gaussian filters (36 features),
vessel (i.e., tubular structures) filters (36 features) (Frangi, Niessen, Vincken, & Viergever,
1998), the Gray Level Co-occurrence Matrix (144 features) (Zwanenburg et al., 2020), the
Gray Level Size Zone Matrix (16 features) (Zwanenburg et al., 2020), the Gray Level
Run Length Matrix (16 features) (Zwanenburg et al., 2020), the Gray Level Dependence
Matrix (14 features) (Zwanenburg et al., 2020), the Neighbourhood Grey Tone Difference
Matrix (five features) (Zwanenburg et al., 2020), Local Binary Patterns (18 features) (Ojala,
Pietikainen, & Maenpaa, 2002), and local phase filters (36 features) (Kovesi, 1997, 2003).
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These features describe more complex patterns within the lesion, such as heterogeneity,
occurrence of blob-like structures, and presence of line patterns.

Most of the texture features include parameters to be set for the extraction. Beforehand
the values of the parameters that will result in features with the highest discriminative
power for the classification at hand (e.g., high grade vs. low grade) are not known.
Including these parameters in the workflow optimization, see Appendix C, would lead to
repeated computation of the features, resulting in a redundant decrease in computation
time. Therefore, alternatively, these features are extracted at a range of parameters as is
default in WORC. The hypothesis is that the features with high discriminative power will
be selected by the feature selection methods and/or the machine learning methods, as
described in Appendix C.

The dataset used in this study is heterogeneous in terms of acquisition protocols.
Especially the variations in slice may cause feature values to be dependent on the acquisi-
tion protocol. Hence, extracting robust 3D features may be hampered by these variations,
especially for low resolutions. To overcome this issue, all features were extracted per 2D
axial slice and aggregated over all slices, which is default in WORC. Afterwards, several
first-order statistics over the feature distributions were evaluated and used in the machine
learning approach.

Appendix C. Adaptive Workflow Optimization for Automatic Decision
Model Creation

This appendix is similar to (Timbergen et al., 2020; Vos et al., 2019), but details relevant
for the current study are highlighted. The Workflow for Optimal Radiomics Classification
(WORC) toolbox (Starmans et al., 2018) makes use of adaptive algorithm optimization
to create the optimal performing workflow from a variety of methods. WORC defines
a workflow as a sequential combination of algorithms and their respective parameters.
To create a workflow, WORC includes algorithms to perform feature scaling, feature
imputation, feature selection, oversampling, and machine learning. If used, as some of
these steps are optional as described below, these methods are performed in the same order
as described in this appendix. More details can be found in the WORC documentation
(Starmans, 2018). The code to use WORC for creating the differential diagnosis and
molecular analysis decision models in this specific study has been published open-source
(Starmans, 2020).

Feature scaling was performed to make all features have the same scale, as otherwise
the machine learning methods may focus only on those features with large values. This
was done through z-scoring, i.e., subtracting the mean value followed by division by the
standard deviation, for each individual feature. In this way, all features had a mean of zero
and a variance of one. A robust version of z-scoring was used, in which outliers, i.e., values
below the fifth percentile or above the 95th percentile, were excluded from computing the
mean and variance.

When a feature could be computed, e.g., a lesion is too small for a specific feature to be
extracted or a division by zero occurs, feature imputation was used to estimate replacement
values for the missing values. Strategies for imputation included: (1) the mean; (2) the
median; (3) the most frequent value; and (4) a nearest neighbor approach.

Feature selection was performed to eliminate features which were not useful to dis-
tinguish between the classes. These included: (1) a variance threshold, in which features
with a low variance (<0.01) are removed. This method was always used, as this serves as
a feature sanity check with almost zero risk of removing relevant features; (2) optionally,
a group-wise search, in which specific groups of features (i.e., intensity, shape, and the
subgroups of texture features, as defined in Appendix B, are selected or deleted. To this
end, each feature group had an on/off variable which is randomly activated or deactivated,
which were all included as hyperparameters in the optimization; (3) optionally, individual
feature selection through univariate testing. To this end, for each feature, a Mann–Whitney
U test was performed to test for significant differences in distribution between the labels.
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Afterwards, only features with a p-value above a certain threshold were selected. A Mann–
Whitney U test was chosen as features may not be normally distributed and the samples
(i.e., patients) were independent; and (4) optionally, principal component analysis (PCA),
in which either only those linear combinations of features were kept which explained 95%
of the variance in the features or a limited number of components (between 10–50). These
feature selection methods may be combined by WORC, but only in the mentioned order.

Various resampling strategies can optionally be used, which can be used to overcome
class imbalances and reduce overfitting on specific training samples. These included var-
ious methods from the imbalanced-learn toolbox (Lemaitre, Nogueira, & Aridas, 2017);
random over-sampling, random under-sampling, near-miss resampling, the neighbor-
hood cleaning rule, ADASYN, and SMOTE (regular, borderline, Tomek and the edited
nearest neighbors).

Lastly, machine learning methods were used to determine a decision rule to distinguish
the classes. These included: (1) logistic regression; (2) support vector machines; (3) random
forests; (4) naive Bayes; and (5) linear and quadratic discriminant analysis.

Most of the included methods require specific settings or parameters to be set, which
may have a large impact on the performance. As these parameters have to be determined
before executing the workflow, these are so-called “hyperparameters”. In WORC, all
parameters of all mentioned methods are treated as hyperparameters, since they may all
influence the decision model creation. WORC simultaneously estimates which combination
of algorithms and hyperparameters performs best. A comprehensive overview of all
parameters is provided in the WORC documentation (Starmans, 2018).

By default, in WORC, the performance is evaluated in a 100× random-split train-test
cross-validation. In the training phase, a total of 100,000 pseudo-randomly generated
workflows is created. These workflows are evaluated in a 5× random-split cross-validation
on the training dataset, using 80% of the data for actual training and 20% for validation of
the performance. All described methods are fit on the training datasets, and only tested
on the validation datasets. The workflows are ranked from best to worst based on their
mean performance on the validation sets using the F1-score, which is the harmonic average
of precision and recall. Due to the large number of workflows that is executed, there is a
chance that the best performing workflow is overfitting, i.e., looking at too much detail
or even noise in the training dataset. Hence, to create a more robust model and boost
performance, WORC combines the 50 best performing workflows into a single decision
model, which is known as ensembling. These 50 best performing workflows are re-trained
using the entire training dataset, and only tested on the test datasets. The ensemble is
created through averaging of the probabilities, i.e., the chance of lesion with high grade
or low grade, of these 50 workflows. A full experiment consists of executing 50 million
workflows (100,000 pseudo-randomly generated workflows, times a 5× train-validation
cross-validation times 100× train-test cross-validation), which can be parallelized.
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