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Abstract 
In the teaching and researching of linear regression analysis, it is interesting 
and enlightening to explore how the dependent variable vector can be in-
ner-transformed into regression coefficient estimator vector from a visible 
geometrical view. As an example, the roadmap of such inner transformation 
is presented based on a simple multiple linear regression model in this work. 
By applying the matrix algorithms like singular value decomposition (SVD) 
and Moore-Penrose generalized matrix inverse, the dependent variable vector 
lands into the right space of the independent variable matrix and is meta-
morphosed into regression coefficient estimator vector through the three- 
step of inner transformation. This work explores the geometrical relationship 
between the dependent variable vector and regression coefficient estimator 
vector as well as presents a new approach for vector rotating. 
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1. Introduction 

A matrix can be factorized into the product of several matrices with special 
properties. Particularly, by singular value decomposition (SVD) which is widely 
used in regression analysis [1] [2] [3], a matrix can be factorized into the prod-
uct of three matrices with orthogonal or diagonal properties respectively. SVD 
can be formularized like TX U Vθ=  [4] [5] [6] [7].  

Moore-Penrose generalized inverse is a special case of generalized matrix in-
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verse [8] [9] [10] [11] [12] and can be applied in regression analysis [13] [14] 
and least square analysis [15]. For example, in the study of Tian and Zhang [13], 
the linear unbiased estimator of partial coefficients is derived through Moore- 
Penrose generalized inverse algorithm. Herein, multiplied by Moore-Penrose 
generalized inverse of the independent variable matrix, the dependent variable 
vector is transformed into the new coordinate systems, or left space and then 
right space of the independent variable matrix [16]. In fact, this process can also 
be regarded as a vector rotating algorithm. In addition to Moore-Penrose’s ge-
neralized inverse algorithm, singular value decomposition (SVD) facilitates such 
transformation by dividing the transformation process into three-step to present 
a visible geometrical view. 

2. y Can Be Transformed into β̂   

In order to avoid the irrelevant calculation minutia when adopting an indepen-
dent matrix with a large rank and only to highlight inner transformation, herein,  
a simple multiple linear regression model ˆ ˆy X β ε= +  is adopted with the in-

dependent matrix 
1 1
1 2
1 3

X
 
 =  
  

 and the dependent vector 
1
0
2

y
 
 =  
  

, β̂  symbo-

lizes the regression coefficient estimator vector. 
In this multiple linear regression model, the matrix X’s singular value decom-

position (SVD) can be demonstrated as below: 

T
T

0.324 0.854 0.420 4.07 0
0.403 0.915

0.549 0.186 0.820 0 0.6
0.915 0.403

0.774 0.490 0.410 0 0
X U Vθ

   
    = = −      −    −   

 (E.1) 

U and V are respectively the left and right singular vector matrix of X, and θ  
is eigen value matrix of X [6] [7] [17]. 

Because X is a matrix with full rank column, β̂  can be demonstrated as 
ˆ X yβ +=  [13] [16], X +  signifies the Moore-Penrose generalized inverse of 

matrix X. And β̂  can also be demonstrated as below when X is substituted by 
its SVD form presented in equation (E.1),  

( ) ( ) 1T T 1ˆ X y U V y V U yβ θ θ
+ −+ + −= = =             (E.2) 

The Equation (E.2) can be regarded as a process that the vector y is trans-
formed 3 times from right to left multiplied by ( ) 1T 1V Uθ

− + − . 
Transformation 1  

1

1
1

0.324 0.854 0.420 1 1.86
0.549 0.186 0.820 0 0.12
0.774 0.490 0.410 2 1.24

y U y

−

−

     
     = = − = −     
     −     

       (E.3) 

U’s columns are demonstrated as 1

0.324
0.549
0.774

u
 
 =  
  

, 2

0.854
0.186
0.490

u
 
 =  
 − 

 and 
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3

0.420
0.820

0.410
u

 
 = − 
  

. 

Let the coordinate axes of a 3-dimension original coordinate system be symbo-

lized by 1

1
0
0

a
 
 =  
  

, 2

0
1
0

a
 
 =  
  

 and 3

0
0
1

a
 
 =  
  

. The quintessence of the equation 

(E.3) is that multiplied by the matrix 1U − , vector 
1
0
2

y
 
 =  
  

 in the coordinate 

system constructed by 1 2,a a  and 3a , can be transformed into 1

1.86
0.12

1.24
y

 
 = − 
  

  

which is located in a coordinate system constructed by 1 2,u u  and 3u , or left 
space of X. In fact, y and 1y  are at the same spatial location. However, y is in 
the coordinate system constructed by 1 2,a a  and 3a , meanwhile 1y  is pre-
sented by the coordinate system constructed by 1 2,u u  and 3u , in another word, 

1y  is in the left space of X. These locations can be demonstrated as below in 
Figure 1.  

Transformation 2  

1
2 1

4.07 0 1.86 0.46
0 0.6 0.12 0.20
0 0 1.24 0

y U y yθ θ

+

+ − +

     
     = = = − = −     
          

         (E.4) 

During this transformation, multiplied by θ ’s Moore–Penrose inverse θ + , 
the vector 1y  in 1 2,u u  and 3u  coordinate system is transformed into the 
vector 2y  which is in the same coordinate system as 1y . Such a transformation 
can be called “Vector Stretching”. During this transformation, the coordinate 
value of 1y  in 1u  axis diminishes, meanwhile, the coordinate value of 1y  in 

2u  axis gets enlarged. The coordinate value of 1y  in 3u  axis vanishes. The 
“Vector Stretching” of 1y  into 2y  can be demonstrated as below in Figure 2. 

The vanishing coordinate value of 1y  in 3u  axis can signify the degree of 
freedom of X from a geometric view. 

Transformation 3  

( ) ( )
1T

1 1T 1 T
2

0.46
0.403 0.915 0ˆ 0.20
0.915 0.403 0.5

0
V U y V yβ θ

−
− −+ −

       = = = − =     −       

 (E.5) 

X’s right singular vectors can be denoted as T
1

0.403
0.915

v  
=  
 

 and 

T
2

0.915
0.403

v  
=  − 

. T
1v  and T

2v  vectors are located in a coordinate system con-

structed by 1u  and 2u  vectors [16].  
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Figure 1. The dependent variable vector y transformed 
into y1 by landing on to the left space of matrix X. 

 

 

Figure 2. Vector y1 transformed into y2 through 
“Vector Stretching”. 

 
The quintessence of Equation (E.5) is that the vector 2y  in the coordinate 

system is constructed by 1u  and 2u  can be embodied by the vector β̂  in the 
coordinate system T

1v  and T
2v . This transformation is demonstrated as below 

in Figure 3. 
Though the vector β̂  has the same spatial position as 2y  in Figure 3, these 

two vectors are situated in two different coordinate systems constructed respec-
tively by T T

1 2,v v  (the right space of X) and 1 2,u u  (the left space of X). In 
another word, the distinction between the vector β̂  and 2y  is that β̂  is 
demonstrated by the coordinate system of T

1v  and T
2v , meanwhile, 2y  is 

demonstrated by 1u  and 2u . As demonstrated by the aforementioned 3 steps 
of transformation, the dependent variable y vector is inner-transformed into pa-
rameter β̂  vector.  
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Figure 3. Vector y2 transformed into β̂  by landing 
on to the right space of matrix X. 

3. y Can Be Transformed into ŷ   

The independent variable X’s left singular vector matrix U [6] [7] [17]) can be 
blocked into two sub-matrics 1U  and 2U  as below.  

[ ]1 2

0.324 0.854 0.420 0.324 0.854 0.420
0.549 0.186 0.820 0.549 0.186 0.820
0.774 0.490 0.410 0.774 0.490 0.410

U U U
   
   = − = = −   
   − −   

 

Let ŷ  symbolize the estimator of the dependent variable y. For that 1U  is 
the left space of X, ŷ  can be demonstrated as T

1 1
ˆŷ X U U yβ= =  [16], based 

on which the following result can be derived.  
T

T
1 1

0.324 0.854 0.324 0.854 1 0.5
ˆ 0.549 0.186 0.549 0.186 0 1

0.774 0.490 0.774 0.490 2 1.5
y U U y

       
       = = =       
       − −       

 
Because 1U  is an orthonormal matrix, 1U ’s Moore-Penrose inverse 1U +  is 

equal with T
1U  [12]. So, ŷ  can be demonstrated as below:  

1 1

0.324 0.854 0.324 0.854 1 0.5
ˆ 0.549 0.186 0.549 0.186 0 1

0.774 0.490 0.774 0.490 2 1.5
y U U y

+

+

       
       = = =       
       − −       

     (E.6) 

Based on E.6, y can be transformed into ŷ  by two steps as below.  
Transformation 4  

1

0.324 0.854 1
1.86

0.549 0.186 0
0.12

0.774 0.490 2
y U y

+

∗ +

   
    = = =      −    −   

            (E.7) 

In Transformation 4, y transforms into y∗  by being projected into 1U , the 
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left space of X. Another word, y∗  is the projection of y in X. 
Transformation 5 

1 1 1

0.324 0.854 0.5
1.86

ˆ 0.549 0.186 1
0.12

0.774 0.490 1.5
y U U y U y+ ∗

   
    = = = =    −    −   

       (E.8) 

In Transformation 5, multiplied by 1U , y∗  transforms into ŷ  and is pre-
sented in the coordinate system constructed by 1 2,a a  and 3a . Their spatial lo-
cations are demonstrated in Figure 4. 

In Figure 4, it can be found that the error estimator ε̂  is located in the same 
direction with 3u  which is the left null space of matrix X, and can be expressed 
as below: 

3

0.5 0.42
ˆ 1 1.22 0.82 1.22

0.5 0.41
uε

   
   = − ≅ − =   
      

. 

ŷ  is the projection of y into the left space of X, but presented in the original 
coordinate system constructed by 1 2,a a  and 3a . ε̂  is located in the left null 
space of matrix X and perpendicular with ŷ . This perpendicular result can be 
geometrically demonstrated in Figure 4 as well as in the following multiplica-
tion.  

[ ]T

0.5
ˆˆ 0.5 1 1.5 1 0

0.5
y ε

 
 = − = 
  

. 

4. Finding and Conclusion 

By applying SVD and Moore-Penrose generalized inverse of the independent 
variable X in a multiple linear regression model, the dependent variable y can 
be transformed into the regression coefficient estimator vector β̂  and its own 
estimator ŷ . This process presents a new geometric perspective to study the re-
lationship between X, y, β̂  and ŷ , through the inner-transformation algo-
rithm. 

As demonstrated from Figures 1-3, y transforms into β̂  by transforming 
from the original coordinate system of 1 2,a a  and 3a  into the right space of X 
constructed by T

1v  and T
2v . Through this process, y transforms into 1y  by 

transferring into the coordinate system of 1 2,u u  and 3u , that is presented by 
Transformation 1 (E.3) and demonstrated in Figure 1.  

Multiplied by θ + , the Moore-Penrose inverse of θ , 1y  stretches into 2y , 
that is presented by Rotation 2 (E.4) and demonstrated in Figure 2. In this 
transformation, the coordinate value of 1y  in 3u  axis vanished, which also 
signifies the degree of freedom of X from a geometric view. 

Multiplied by ( ) 1TV
−

, the inverse of the right singular value matrix of X, 2y  
transforms into β̂ , that is presented by Rotation 3 (E.5) and demonstrated in 
Figure 3.  
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Figure 4. The dependent variable estimator ŷ  landing 
on to the left space of X, meanwhile, the error estimator 
ε̂  landing on to the left null space of X. 

 
As demonstrated in Figure 4, y transforms into y∗  by projecting into 1U , 

the left space of X. And then, multiplied by 1U , y∗  transforms into ŷ  and 
returns back into the original coordinate system constructed by 1 2,a a  and 3a . 
ŷ  is the projection of y into the left space of X, and perpendicular with error 

estimator ε̂  which is located in the left null space of X. 
With the aid of the algorithms like matrix decomposition and Moore-Penrose 

generalized matrix inverse, the dependent variable y of a multiple linear regres-
sion model can be inner-transformed into the regression coefficient estimator 
β̂  and its own estimator ŷ . This process is a new approach to illustrate the 
inner-transformation between variables from a geometric view as well as pre-
senting the spatial locations of the variables. To date, there is no study to explore 
the relationship between the variables of the multiple linear regression model 
from the view of geometric transformation. This study fills such a gap and pro-
vides a new perspective for studying multiple linear regression.  

The limitation of this work is that a simple example of the multiple linear 
model is adopted to present such intricate inner transformation. But, it can 
demonstrate more inference art of inner transformation if more complex exam-
ples of multiple linear regression model are adopted in future studies.  
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