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Abstract 
In this paper, we extend the notions of ideal statistically convergence for se-
quence of fuzzy number. We introduce the notions ideal statistically pre- 
Cauchy triple sequences of fuzzy number about Orlicz function, and give 
some correlation theorem. It is shown that { }ijkx x=  is ideal statistically pre- 

Cauchy if and only if ( ) ( ){2 2 2

1, , : , , :m n t N N N i j k
m n t

 ∈ × ×
  

( ) }, , , ,ijk pqrD x x i m j n t k Iε δ


≥ ≤ ≤ ≤ ≥ ∈


. At the same time, we have proved 

{ }ijkx x=  is ideal statistically convergent to 0x  if and only if  

( )
( )0

1 1 1

,1, , :
m n t ijk

i j k

D x x
m n t N N N M I

mnt
δ

ρ= = =

    ∈ × × ≥ ∈     
∑∑∑ . Also, some pro- 

perties of these new sequence spaces are investigated. 
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1. Introduction 

The notion of statistical convergence was introduced by Fast [1] and also inde-
pendently by Buck [2] and Schoenberg [3] for real and complex sequences.Over 
the years and under different names statistical convergence has been discussed 
in the theory of Fourier analysis, Ergodic theory and Number theory. Later on it 
was further investigated from the sequence spaces point of view and linked with 
summability theory by Altinok and Et [4], Connor [5], Et et al. ([6] [7] [8]), Fri-
dy [9], Fridy and Orhan [10], Mursaleen [11] and many others. 

Matloka [12] defined the notion of fuzzy sequence and introduced bounded 
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and convergent sequences of fuzzy real numbers and studied their some proper-
ties. After then, Nuray and Savas [13] defined the notion of statistical conver-
gence for sequences of fuzzy numbers. Since then, there has been increasing in-
terest in the study of statistical convergence of fuzzy sequences (see [14]-[19]). 

Lindesstrauss and Tzafriri [20] used the idea of Orlicz sequence space,  

1
: : , for some 0M

k

x
l x Mω ρ

ρ

∞

=

   = ∈ < ∞ >  
   

∑ , which is Banachi space with the 

norm: 
1

inf 0 : 1M
k

x
x Mρ

ρ

∞

=

   = > ≤  
   

∑ . The space Ml  is closely related to  

the space pl , which is an Orlicz sequence space with ( ) pM x x=  for 1 p≤ < ∞ . 
Connor, Fridy and Kline [21] proved that statistical convergent sequences are 

statistically pre-Cauchy and any bounded statistically pre-Cauchy sequence with 
nowhere dense set of limit points is statistically convergent. They also gave an 
example showing statistically pre-Cauchy sequences are not necessarily statisti-
cally convergent. 

In this paper, we extend the notions of ideal statistically convergence for se-
quence of fuzzy number. We introduce the notions ideal statistically pre-Cauchy 
triple sequences of fuzzy number about Orlicz function, and give some correla-
tion theorem. Also, some properties of these new sequence spaces are investi-
gated. It popularized the work of predecessors. 

2. Definitions and Preliminaries 

In this section, we give some basic notions which will be used throughout the 
paper. 

Let ( )A F R∈� �  be a fuzzy subset on R. If A�  is convex, normal, upper semi- 
continuous and has compact support, we say that A�  is a fuzzy number. Let cR�  
denote the set of all fuzzy numbers. 

For cA R∈� � , we write the level set of A�  as ( ){ }:A x A xλ λ= ≥  and  
,A A Aλ λ λ

− + =   . Let , cA B R∈� � � , we define A B C+ =� ��  iff A B Cλ λ λ+ = ,  
[ ]0,1λ ∈  iff A B Cλ λ λ

− − −+ =  and A B Cλ λ λ
+ + ++ =  for any [ ]0,1λ ∈ . A B Cλ λ λ⋅ = , 

where 

{ }min , , , ,C A B A B A B A Bλ λ λ λ λ λ λ λ λ
− − − − + + − + += ⋅ ⋅ ⋅ ⋅  

{ }max , , , .C A B A B A B A Bλ λ λ λ λ λ λ λ λ
+ − − − + + − + += ⋅ ⋅ ⋅ ⋅  

Define 

( )
[ ]

( )
[ ]

{ }
0,1 0,1

, sup , sup max , ,D A B d A B A B A Bλ λ λ λ λ λ
λ λ

− − + +

∈ ∈
= = − −� �  

where d is the Hausdorff metric. ( ),D A B� �  is called the distance between A�  
and B� . 

Using the results of [22] [23], we see that 
1) ( ),cR D�  is a complete metric space,  
2) ( ) ( ), ,D u w v w D u v+ + = , 
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3) ( ) ( ), , , D ku kv k D u v k R= ∈ ,  
4) ( ) ( ) ( ), , ,D u v w e D u w D v e+ + ≤ + ,  
5) ( ) ( ) ( ), 0 , 0 , 0D u v D u D v+ ≤ + ,  
6) ( ) ( ) ( ), , 0D u v w D u w D v+ ≤ + + ,  
Where , , , cu v w e R∈ � , 0�  represents zero fuzzy number. 
A sequence { }nx  of fuzzy numbers is said to be statistically convergent to a 

fuzzy number 0x  if for each 0ε >  the set ( ) ( ){ }0: ,nA n N D x xε ε= ∈ ≥  has 
natural density zero. The fuzzy number 0x  is called the statistical limit of the 
sequence { }nx  and we write st- 0lim nn

x x
→∞

=  [24].  
The concept of Orlicz function was introduced by Parashar and Choudhary 

[25], A mapping [ ) [ ): 0, 0,M ∞ → ∞  is said to be an Orlicz funtion [26] 
1) ( )0 0M =  iff 0x = ,  
2) ( ) 0M x >  for 0x > ,  
3) ( )M x →∞  as x →∞ ,  
4) M is continuous, nondecreasing and convex. 
An Orlicz function may be bounded or unbounded. For example,  
( ) ( )0 1pM x x p= < ≤  is bounded. 

A triple sequence can be defined as a function ( ):X N N N R C× × →  where 
N, R nad C denote the set of natural numbers, real numbers and complec num-
bers respectively. A triple sequence { }ijkx  is said to be Cauchy sequence if for 
every 0ε > , there exist ( )N Nε ∈  such that ijk pqrx x ε− <  whenever  
,i p N≥ , ,j q N≥ , ,k r N≥  [27]. 

A triple sequence { }ijkx  is called statistically pre-Cauchy if for every 0ε >  
there exist ( ) ( ),p p qε ε=  and ( )r ε  such that 

2 2 2, ,

1lim , , , 0.ijk pqrm n t
x x i m j n t k

m n t
ε

→∞
− ≥ ≤ ≤ ≤ =  

where the vertical bars indicate the number of elements in the set [28]. 

3. Main Results 

Definition 3.1. A triple sequence of fuzzy numbers is said to be ideal statisti-
cally pre-Cauchy if for every 0, 0ε δ> >  there exist ( ) ( ),p p qε ε=  and  
( )r ε  such that 

( ) ( ) ( ){ }2 2 2

1, , : , , : , , , , .ijk pqrm n t N N N i j k D x x i m j n t k I
m n t

ε δ ∈ × × ≥ ≤ ≤ ≤ ≥ ∈ 
 

 

where the I denote the nontrivival ideal of N. 
Theorem 3.1. Let { }ijkx x=  be a triple sequence of fuzzy number and let M 

be a bounded Oricz function. Then x is ideal statistically pre-Cauchy if and only 
if 

( )
( )

2 2 2
, , ,

,1, , : .ijk pqr

i p m j q n k r t

D x x
m n t N N N M I

m n t
δ

ρ≤ ≤ ≤

    ∈ × × ≥ ∈     
∑ ∑ ∑  

Proof. Suppose that 
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( )
( )

2 2 2
, , ,

,1, , : .ijk pqr

i p m j q n k r t

D x x
m n t N N N M I

m n t
δ

ρ≤ ≤ ≤

    ∈ × × ≥ ∈     
∑ ∑ ∑  

For each 0, 0ε δ> >  and 0ρ > , , ,m n t N∈ , we have 

( )

( )

( )

( )

( )

( )

2 2 2
, , ,

2 2 2
, , , ,

2 2 2
, , , ,

2 2 2
, , , ,

,1

,1

,1

1

ijk pqr

ijk pqr

ijk pqr

ijk pqr

i p m j q n k r t

ijk pqr

i p m j q n k r tD x x

ijk pqr

i p m j q n k r tD x x

i p m j q n k r tD x x

D x x
M

m n t

D x x
M

m n t

D x x
M

m n t

M
m n t

ε

ε

ε

ρ

ρ

ρ

≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≥

≤ ≤ ≤ ≤

 
 
 
 

 
 =
 
 
 
 +
 
 

≥

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑
( )

( ) ( ) ( ){ }2 2 2

,

1 , , : , , , , .

ijk pqr

ijk pqr

D x x

M i j k D x x i m j n k t I
m n t

ρ

ε ε δ

 
 
 
 

 ≥ ≥ ≤ ≤ ≤ ≥ ∈ 
 

 

Now suppose that x is ideal statistically pre-Cauchy and that ε  has been 
given. 

Let 0, 0ε δ> >  be such that ( )
2

M εξ < . 
Since M is bounded Orlicz function, there exist an integer G such that  
( )

2
GM x <  for all 0x ≥ . 

Not that, for each , ,m n t N∈  

( )

( )

( )

( )

( )

( )

2 2 2
, , ,

2 2 2
, , , ,

2 2 2
, , , ,

2 2 2
, , , ,

,1

,1

,1   

1

ijk pqr

ijk pqr

ijk p

ijk pqr

i p m j q n k r t

ijk pqr

i p m j q n k r tD x x

ijk pqr

i p m j q n k r tD x x

i p m j q n k r tD x x

D x x
M

m n t

D x x
M

m n t

D x x
M

m n t

M
m n t

ξ

ξ

ρ

ρ

ρ

ξ

≤ ≤ ≤

≤ ≤ ≤ <

≤ ≤ ≤ ≥

≤ ≤ ≤

 
 
 
 

 
 =
 
 
 
 +
 
 

≤ +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑
( )

( )

( ) ( ){ }

( ) ( ){ }

2 2 2

2 2 2

,

1 , , : , , , ,
2 2

1 , , : , , , , .

qr

ijk pqr

ijk pqr

ijk pqr

D x x
M

G i j k D x x i m j n k t
m n t

G i j k D x x i m j n k t I
m n t

ξ ρ

ε ξ δ

ε ξ δ

≥

 
 
 
 

 ≤ + ≥ ≤ ≤ ≤ ≥ 
 
 ≤ + ≥ ≤ ≤ ≤ ≥ ∈ 
 

∑

 

Hence 

( )
( )

2 2 2
, , ,

,1, , : .ijk pqr

i p m j q n k r t

D x x
m n t N N N M I

m n t
δ

ρ≤ ≤ ≤

    ∈ × × ≥ ∈     
∑ ∑ ∑  

Theorem 3.2. Let { }ijkx x=  be a triple sequence of fuzzy numbers and let M 
be a bounded Orlicz function. Then x is ideal statistically convergent to 0x  if 
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and only if  

( )
( )0

1 1 1

,1, , : .
m n t ijk

i j k

D x x
m n t N N N M I

mnt
δ

ρ= = =

    ∈ × × ≥ ∈     
∑∑∑  

Proof. Suppose that 

( )
( )0

1 1 1

,1, , : .
m n t ijk

i j k

D x x
m n t N N N M I

mnt
δ

ρ= = =

    ∈ × × ≥ ∈     
∑∑∑  

For each 0, 0ε δ> >  and 0ρ > , , ,m n t N∈ , we have 

( )

( )

( )

( )

( )

( )

( )

( ) ( )

0

0

0

0

1 1 1

0

1 1 1, ,

0

1 1 1, ,

0

1 1 1, ,

,1

,1

,1

,1

1 , , :

ijk

ijk

ijk

m n t ijk

i j k

m n t ijk

i j k D x x

m n t ijk

i j k D x x

m n t ijk

i j k D x x

i

D x x
M

mnt

D x x
M

mnt

D x x
M

mnt

D x x
M

mnt

M i j k D x
mnt

ε

ε

ε

ρ

ρ

ρ

ρ

ε

= = =

= = = ≥

= = = <

= = = ≥

 
 
 
 

 
 =
 
 
 
 +
 
 

 
 ≥
 
 

≥

∑∑∑

∑∑ ∑

∑∑ ∑

∑∑ ∑

( ){ }0, , , , .jk x i m j n k t Iε δ ≥ ≤ ≤ ≤ ≥ ∈ 
 

 

We have x is ideal statistically convergent to 0x . 
Now suppose that x is ideal statistically convergent to 0x , let 0, 0ε δ> >  be 

such that ( )
2

M εξ < . 
Since M is bounded Orlicz function, there exist an integer G such that  
( )

2
GM X <  for all 0x ≥ . 

Note that, for each , ,m n t N∈  

( )

( )

( )

( )

( )

( )
( )

( )

0

0

0

0

1 1 1

0

1 1 1, ,

0

1 1 1, ,

0

1 1 1, ,

,1

,1

,1

,1

1 ,
2 2

ijk

ijk

ijk

m n t ijk

i j k

m n t ijk

i j k D x x

m n t ijk

i j k D x x

m n t ijk

i j k D x x

D x x
M

mnt

D x x
M

mnt

D x x
M

mnt

D x x
M M

mnt

G i j
mnt

ε

ε

ε

ρ

ρ

ρ

ξ
ρ

ε

= = =

= = = ≥

= = = <

= = = ≥

 
 
 
 

 
 =
 
 
 
 +
 
 

 
 ≤ +
 
 

≤ +

∑∑∑

∑∑ ∑

∑∑ ∑

∑∑ ∑

( ) ( ){ }

( ) ( ){ }

, : , , , ,

1 , , : , , , , .

ijk pqr

ijk pqr

k D x x i m j n k t

G i j k D x x i m j n k t I
mnt

ξ δ

ε ξ δ

 ≥ ≤ ≤ ≤ ≥ 
 
 ≤ + ≥ ≤ ≤ ≤ ≥ ∈ 
 

 

Hence 
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( )
( )0

1 1 1

,1, , : .
m n t ijk

i j k

D x x
m n t N N N M I

mnt
δ

ρ= = =

    ∈ × × ≥ ∈     
∑∑∑  

Corollary 3.3. Let { }ijkx x=  be a bound triple sequence of fuzzy number. 
Then x is ideal statistically pre-Cauchy if and only if  

( ) ( )2 2 2
1 1 1

1, , : , .
m n t

ijk pqr
i j k

m n t N N N D x x I
m n t

δ
= = =

 
∈ × × ≥ ∈ 

 
∑∑∑  

Proof. Let ( )
, ,

sup , 0ijk
i j k

K D x=  and defined ( ) ( )1 2
1

K x
M x

x
+

=
+

, then  

( )
( ) ( )

,
1 2 ,ijk pqr

ijk pqr

D x x
M K D x x

ρ

 
  ≤ +
 
 

, and 

( )
( )

( )
( )

( ) ( )

( )
( ) ( ) ( )

, ,
1 2

1 ,

1 2 ,

1 ,

1 2 ,
, .

1 2

ijk pqr ijk pqr

ijk pqr

ijk pqr

ijk pqr

ijk pqr
ijk pqr

D x x D x x
M K

D x x

K D x x

D x x

K D x x
D x x

A

ρ

ρ

 
  = +
  + 

+

≥
+

+
≥ =

+

 

Hence ( ) ( )2 2 2
1 1 1

1, , : ,
m n t

ijk pqr
i j k

m n t N N N D x x I
m n t

δ
= = =

 
∈ × × ≥ ∈ 

 
∑∑∑ , if and  

only if ( )
( )

2 2 2
, , ,

,1, , : ijk pqr

i p m j k n t r t

D x x
m n t N N N M I

m n t
δ

ρ≤ ≤ ≤

    ∈ × × ≥ ∈     
∑ ∑ ∑ , 

and an immediate application of Theorem 3.1 completes the proof. 
Corollary 3.4. Let { }ijkx x=  be a bound triple sequence of fuzzy number. 

Then x is ideal statistically convergent 0x  if and only if  

( ) ( )0
1 1 1

1, , : , .
m n t

ijk
i j k

m n t N N N D x x I
mnt

δ
= = =

 
∈ × × ≥ ∈ 

 
∑∑∑  

Proof. Let ( )
, ,

sup , 0ijk
i j k

K D x=  and defined ( ) ( )01
1
K x x

M x
x

+ +
=

+
, then  

( )
( ) ( )0

0 0

,
1 ,ijk

ijk

D x x
M K x D x x

ρ

 
  ≤ + +
 
 

, and  

( )
( )

( )
( )

( ) ( )

( )
( ) ( ) ( )

0 0
0

0

0 0

0

0 0
0

0

, ,
1

1 ,

1 ,

1 ,

1 ,
, .

1

ijk ijk

ijk

ijk

ijk

ijk
ijk

D x x D x x
M K x

D x x

K x D x x

D x x

K x D x x
D x x

K x

ρ

ρ

 
  = + +
  + 

+ +

≥
+

+ +
≥ =

+ +
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Hence ( ) ( )0
1 1 1

1, , : ,
m n t

ijk
i j k

m n t N N N D x x I
mnt

δ
= = =

 
∈ × × ≥ ∈ 

 
∑∑∑ , if and only if 

( )
( )0

2 2 2
1 1 1

,1, , :
m n t ijk

i j k

D x x
m n t N N N M I

m n t
δ

ρ= = =

    ∈ × × ≥ ∈     
∑∑∑ , and an imme-

diate application of Theorem 3.1 completes the proof. 

4. Conclusion 

In this article, we introduced ideal statistically pre-Cauchy triple sequences of 
fuzzy numbers about Orlicz function. At the same time, we have proved some 
properties and relationships. 
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