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Abstract

Aims: This paper provides a systematic study on attribute reduction with interval-valued fuzzy
rough sets.

Study Design: The interval-valued fuzzy rough sets are an important improvement of
traditional rough set model to deal with both fuzziness and vagueness in data which the
traditional one cannot handle.

Place and Duration of Study: The existing researches on interval-valued fuzzy rough sets
mainly focus on the establishment of lower and upper approximation operators by using
constructive and axiomatic approaches. Less effort has been put on the attributes reduction of
databases based on interval-valued fuzzy rough sets.

Methodology: After introducing some concepts and theorems of attributes reduction with
interval-valued fuzzy rough sets, we study the structure of the attributes reduction with
interval-valued fuzzy rough sets and present an algorithm by using discernibility matrix to find
all the attributes reductions with interval-valued fuzzy rough sets.

Results: Finally, we propose an example to demonstrate our idea and method in this paper.
Conclusion: With these discussions we construct a basic foundation for attributes reduction
based on interval-valued fuzzy rough sets.

Keywords: Interval-valued fuzzy rough sets, rough sets, attributes reduction, discernibility matrix.
1 Introduction

Rough set theory, originally proposed by Pawlak [1], can be regarded as an effective mathematical
vehicle for dealing with imprecise and ambiguous data analysis. This theory has been
demonstrated to have its usefulness and versatility in successfully solving a variety of problems
[2-4]. The theory of rough sets deals with the approximation of an arbitrary subset of a universe
by two definable subsets called lower and upper approximations. By using the concepts of lower
and upper approximations in rough set theory, knowledge hidden in information systems may be
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unraveled and expressed in the form of decision rules [5-8]. The concept of attributes reduction
can be viewed as the strongest and most important results in rough sets theory to distinguish itself
from other theories. Many studies of attributes reduction with rough sets could be found in the
literature [9-20]. For example, Tsang and Chen et al. [21,22] discussed attribute reduction with
covering rough sets. Tsang et al. [23] introduced formal concepts of attributes reduction with
fuzzy rough sets and completely studied the structure of attributes reduction. They also developed
an algorithm using discernibility matrix to compute all the attributes reductions. Wang et al. [24]
provided a systematic study on attribute reduction with rough sets based on general binary
relations.

Interval-valued fuzzy (IVF for short) sets [25,26] is a natural extensions of Zadeh’s fuzzy sets
[27], which were conceived independently to avoid some of the defects of fuzzy sets. IVF set
theory emerges from the observation that in a lot of cases, no objective procedure is available to
select the crisp membership degrees of elements in a fuzzy set. Hence, the grade of membership of
an element in the universe of discourse belonging to an interval-valued fuzzy set is represented by

an interval in [0,1] . The interval-valued fuzzy sets are more precise and flexible to model

vagueness and uncertainty in practice than those of fuzzy sets. They have been applied to different
research fields [28-39]. Recently, some authors extended rough set theory into IVF sets [40-42].
For example, Gong et al. [40] combined the interval-valued fuzzy sets and the rough sets, and
studied the basic theory of the interval-valued rough fuzzy sets. Sun et al. [41] presented an
interval-valued fuzzy rough set model by means of integrating the classical Pawlak rough set
theory with the interval-valued fuzzy set theory, investigated knowledge reduction of the interval-
valued fuzzy information system, and obtained some knowledge reduction theorems. Zhang et al.

[42] proposed a general study of (Z,7 ) -interval-valued fuzzy rough sets on two universes of

discourse integrating the rough set theory with the interval-valued fuzzy set theory by constructive
and axiomatic approaches.

It is well known that any generalization of traditional rough set theory should address two
important theoretical issues. The first one is to present reasonable definitions of set approximation
operators, and the second one is to develop reasonable algorithms for attributes reduction. It
should be noted that the existing interval-valued fuzzy rough sets mainly pay attention to
constructing approximation operators. The study for the attributes reduction of interval-valued
fuzzy rough sets is still blank. It should be noted that the values of attributes could be denoted by
interval-valued fuzzy sets [29,33,34,38]. It is hard to deal with such attributes for the traditional
rough sets and fuzzy rough sets. In view of the requirement of possible applications and the
complement of theoretical aspect of rough sets, it is interesting and important to construct the
attributes reduction with interval-valued fuzzy rough sets. This paper systematically studies
attribute reduction with interval-valued fuzzy rough sets. The structure of reduction is completely
investigated and an algorithm using discernibility matrix to find all the attributes reductions is
proposed.

The rest of the paper is structured as follows. Section 2 presents the fundamentals of Pawlak’s
rough sets, and reviews some basic notions of interval-valued fuzzy rough sets. In Section 3, we
present the concept of attributes reduction with interval-valued fuzzy rough sets, and develop an
algorithm using discernibility matrix to compute all the attributes reductions. An illustrated
example is proposed in Section 4. Finally, some concluding remarks are presented in Section 5.
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2 Preliminaries

2.1 Rough Sets Attributes Reduction

The following basic concepts about Pawlak’s rough sets can be found in [1,14,23].

An information system is a pair A = (U, A), where U ={x,,x,,"--,x,} is a nonempty finite set of
objects and A={a,,a,,---,a,} is a nonempty finite set of attributes. With every subset of
attributes B — A we associate a binary relation IND(B), called B -indiscernibility relation, and
defined as IND(B)={(x,y)eUxU:a(x)=a(y),Vae B} . IND(B) is obviously an
equivalence relation and IND(B)=,_,IND({a}). By [x], we denote the equivalence class of
IND(B) including x . For any subset XcU , B(X)={xeU:[x], cU} and
B(X) ={xe U:[x],NU = @} are called B -lower and B -upper approximations of X in A,

respectively.

By M (A) we denote a nXn matrix (cﬁ), called the discernibility matrix of A, such that
¢; ={ae A:a(xi);ta(xj)} for i,j=12,---,n . A discernibility function f(A) for an

information system A=(U,A) is a Boolean function of m Boolean variables a_l,a_2,~--,a_

m

corresponding to the attributes a,,a,, -, a,, , respectively, and defined as
f (A)(aT,aj,---,Z) = /\{v(cu.): 1<j<is< n}

where v (cif) is the disjunction of all variables a such that ae Gy

An attribute ae BC A is superfluous in B if IND(B):IND(B—{a}) , otherwise a is

indispensable in B .

The collection of all indispensable attributes in A is called the core of A. We say that BC A is
independent in A if every attribute in B is indispensable in B. B C A is called a reduction in A
if B is independent and IND(B)=IND(A). The set of all the reductions in A is denoted as

Red (A). Let g(A) be the reduced disjunctive form of f(A) obtained from f(A) by applying
the multiplication and absorption laws, then there exist / and X, c A for k =1,2,---,/ such that
g(A)=(~X,)v(AaX,)v--v(AX,) where each element in X, appears only one time. We have
Red (A)={X,,---.X,}.

A decision system is a pair A" = (U ,AU{a*}), where a” is the decision attribute, A is condition
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attribute set. We say ae BC A is relatively dispensable in B if POS B(a*):POSB_{a}(a*) ,
otherwise a is said to be relatively indispensable in B, where POS, (a*) is the union of B -

lower approximation of all the equivalence classes induced by & , ie.,

POS, (a* ) =U B(X). If every attribute in B is relatively indispensable in B, we say that

XEU/a'—
B A is relatively independent in A" . BC A is called a relative reduction in A* if B is
relatively independent in A" and POSB(a*)zPOS B (a*) . The collection of all relatively

indispensable attributes in A is called the relative core of A",

Suppose M (A) = (c,.j ) . We denote a matrix M(A*) = (cv) in the following way:

(D ¢c,=c,~{a’},if(a"ec; and x,x;€ POSA(a*)) or pos(x,)# pos(xj) ;
(2) ¢, =9, otherwise.

Here pos:U —{0,1} is defined as pos(x)=1 if and only if xe POS, (a*). All the relative

reductions can be computed in an analogous way as reductions of M (A).
2.2 Interval-valued Fuzzy Rough Sets

Throughout this paper, let I be a closed unit interval, ie., I =[0, 1] . Let
[I] :{[a,b]:a <b,a,be I}. For any ae€ I, define E:[a,a]. Let U be an ordinary nonempty
set,and P(U) be the power set of U .

Definition 2.1 [40,41]. If a,€ I,ie J,J ={1,2,---,m}, we define
Vi, a, =supia,:ie J}, A_,a =inf{a, :ie J},
Violab =V avia bl A lanb]=[Ae, a0 n0b]-
In particular, for [a,,b,]€[I],i=1,2, we define
[al,bl]z[az,bz] iff a, =a,,b, =b,;
la,.b, ] <[ay.b,] iff o <o p <3

[al’bl]<[a2’b2] iff [al’bl]s[aZ’bZ]’ [al’bl]i[aZ’bZ]'

The complement of [a,,b,] is denoted by [a,,b,]" =1~[a,,b]=[1-b,1-q,].

2049



British Journal of Mathematics & Computer Science 4(14), 2046-2066, 2014

Definition 2.2 [40,41]. The mapping A:U — [/] is called an interval-valued fuzzy set in U . All
interval-valued fuzzy set on U are denoted as IVF(UxU) . If AeIVF(UxU) , let

A(x):[A‘ (x), A" (x)] , where xe U , then two fuzzy sets A:U —1I, and A":U —1 are

called the lower fuzzy set and the upper fuzzy set about A, respectively.

Obviously, every fuzzy set A can be identified with the interval-valued fuzzy set of the form

{[A(x).A(x)]|xeU}.

Let U be a non-empty finite universe. A binary interval-valued fuzzy subset R of UXU is
called an interval-valued fuzzy relation in U .

Some basic operations on [VF (U) are defined as follows:

VA,Be IVF (U)>

4 c g if and only if (iff) A™(x)<B (x) and A*(x)<B*(x) forall rcv ,

asp iff pca,

A=B iff Acp and pc a,le, A (x)=B7(x) and A"(x)=B"(x) forall xcv ,

(ANB)(x)=[ A ()4 ()] A[ B ()87 (1) =[ A (x) A B (x). A7 (x) A B" (x) ]

(AUB)(x)=[ A" (x). 4" (x) v [~ (x).B" (x)]

[A™(x)v B (x),A"(x)v B*(x)]-

For [a,pBle[l] , [af] will be denoted by the constant interval-valued fuzzy set:
[@.B](x)=[a.B] for all xeU . The interval-valued fuzzy universe set is U =1, and the interval-

valued fuzzy empty setis @=0.

Definition 2.3 [41]. For the interval-valued fuzzy relation Re IVF (U XU ), we say that

(1) R is reflexive if R(x,x)=1 forall xeU,
(2) R issymmetricif forall ), ., . R(xy)=R(yx),

Vi [R(xY)AR(y.2)]-

[\

(3) R istransitive if for all (x,z)e UXU, R(x,z)

If the fuzzy relation R is reflexive, symmetric and transitive, then R is an interval-valued fuzzy
equivalence relation.

The similarity class [x] . (interval-valued fuzzy equivalence class) with xe U is an interval-

valued fuzzy seton U defined by [x], (y)=R(x,y) forall yeU.

The collection of all interval-valued fuzzy similarity classes can be denoted as U/R.
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Definition 2.4 [41]. Let U be a nonempty finite universe and Re IVF (UxU). (U,R) is called
an interval-valued fuzzy approximation space. For any Ae IVF(U), the upper and lower
approximations of A about (U,R), denote by R(A) and R(A), are two interval-valued fuzzy

sets and are, respectively, defined as follows:

Vxe U,

R(A)(x)=max{A(y)AR(x,y):ye U},
R(A)(x)=min{A(y)v(1-R(x.y)): ye U}.

If for any xe U ,R(A)(x)=R(A)(x), then the interval-valued fuzzy set A is definable about

interval-valued fuzzy approximation space (U,R). Or else the interval-valued fuzzy set A is
rough about the interval-valued fuzzy approximation space, and A is called an interval-valued
fuzzy rough set. Meanwhile, the mappings R:IF(U)— IF(U) and R:IF(U)— IF (U) are
referred to as the lower interval-valued fuzzy rough approximation operator and upper interval-
valued fuzzy rough approximation operator.

Clearly, the above definition implies equivalences of the following form:

VxeU ,

=|

(4)(x) = v (A(»)AR(xy))

- [);/U(A- (VAR (x.3)). v, (A" (y) AR (x,y))}

R(A)(x)= A (A (=R (x.))))
:[ A (A )V (=R (2. ))). A (A7 (y)v(l—R’(x,y)))]

yelU ’ ye
Theorem 2.1 [41]. Let U be a nonempty and finite universe of discourse and
R,R,R,e IVF(UxU). Then the upper and lower approximation operators in Definition 2.4

satisfy the following properties:
VA,Be IVF (U),

(1) R(ANB)=R(A)NR(B).R(AUB)=R(A)UR(B),
(@) R(~A)=~FK(A), R(~ A) =~ R(A),
(3) R(AUB)2R(A)UR(B), R(ANB)c=R(A)NR(B),
(4) AcB,R(A)cR(B).R(A)c R(B),
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) Rf(a.p)NA)=(a.B)NR(4), B((a,ﬁ)UA)=(04 JUR(4),
6) R SR, =R (A)DR,(4), R R

3 Attributes Reduction Based on Interval-Valued Fuzzy Rough
Sets

In this section we will define attribute reduction based on interval-valued fuzzy rough sets for
interval-valued fuzzy decision system and propose some equivalence conditions to describe the
structure of attribute reduction. We also develop an algorithm using discernibility matrix to
compute all the attribute reductions.

Following the attributes with IVF values will be called IVF attributes [23]. For every IVF
attribute, an IVF similarity relation can be employed to measure the similar degree between every
pair of objects [23]. If we substitute every IVF attribute by its corresponding IVF similarity
relation and substitute the decision attribute by its corresponding equivalence relation, we can get
an IVF decision system consisting of three parts, a finite universe of discourse, a family of IVF
similarity relations and a crisp equivalence relation [23]. Thus every dataset with IVF value
conditional attributes and symbolic decision attribute can be expressed as an IVF decision system
so that it is convenient to deal with by techniques of IF rough sets [23].

Two key problems must be solved before we define attribute reduction based on IVF rough sets
[23]. One is what should be invariant after reduction [23]. We employ the idea in traditional rough
sets of keeping the positive region of decision attribute invariant to define relative reduction with
IVF rough sets; here the positive region of decision attribute will be defined as the union of lower
approximations of decision classes [23]. Another problem is the selection of aggregation operator
for several IVF similarity relations [23]. By Theorem 2.1(6), a smaller IVF similarity relation can
provide more precise lower approximations, thus triangular Min is a reasonable selection of
aggregation operator for several IVF similarity relations [23]. We can define attribute reduction
for IVF decision system based on IVF rough sets with these discussions [23].

Suppose U is a finite universe of discourse, R is a finite set of interval-valued fuzzy similarity
relations called conditional attributes set, D is an equivalence relation called decision attribute
with symbolic values, then (U ,RU D) is called an interval-valued fuzzy decision system. Denote

Sim(R)=N{R:Re R}, then Sim(R) is also an interval-valued fuzzy similarity relation.
Suppose [x]D is the equivalence class with respect to D for xe U, then the positive region of D
relative to Sim(R) is defined as POS, (D)= U,y Sim(R) )([x],) - We say that R is

dispensable relative to D in R if POS,,m (D)= POS D), otherwise we will say R is

Sim(R-{R}) (
indispensable relative to D in R . The family R is independent relative to D if each Re R is
indispensable relative to D in R ; otherwise R is dependent relative to D . Pc R is an
attributes reduction of relative to D if P is independent relative to D and

POS sin(R) (D) POS Sim(P (D) , for short we call P a relative reduction of R . The collection of

all the indispensable elements relative to D in R is called the core of R relative to D , denoted
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as Core(R) . Similar to the result in traditional rough sets we have Core(R)=Red (R),

Red (R) is the collection of all relative reductions of R . Following we study under what
conditions that P R could be a relative reduction of R [23]-

We define an interval-valued fuzzy point x, as , (.- {:1 =% where A=[4,4,]e[I]. 1tis
0, z# x.

obvious that A= (] x, forany Ae IVF(U). Define

A<A(x)
0, 1-R*(x,z)= A or1-R (x,2)>
(XA)R(Z)z (x2)2 4 or (x.2)2 4 , zeU , forany xe U and
A, 1-R"(x,z)< A and 1-R (x,z) < 4,.

A=[A.4]e[I]. Clearly, we have x; c(x;),-
Theorem 3.1. R(A)=U{(x,), :(x,), cA.Ae[I].xe U}.
Proof: R(A)2U{(x,),:(x;), c A.Ae[I].xe U} is clear.

If x, cR(A), then we have A (A'(y)v(l—R+(x,y)))Zﬂ1, thus if 1-R* (x,y)< 4, , then

yeU

A (y)= 4 must hold.
If 1-R"(x,2)2 A4, then (x;),(2)=0,50 (x;),(z) <R(A) (z) holds.
Suppose 1-R* (x,z)<A.If I-R*(y,z)< 4, then

1-R"(x,y) SV{I—R+ (x,z),l—R*(y,z)}</?1,this implies A™(y)= A,. Thus, we have

B(A)_(z)z}é\U(A'(y)v(l—R+(z,y)))Zﬂul =(x),(z) for ze U satisfying 1-R"* (x,z) < 4.
This implies if x; < R(A), then (x;),(z)<R(A) (z) holdsforall ze U .

On the other hand, If x, c R(A), then we have A (A+(y)v(1—R'(x,y)))Zﬂ.2, thus if

yeU

1-R (x,y)<A,, then A*(y)= A, must hold.

If I-R (x,2)= 4, then (x;). (2)=0,s0 (x;),(z) SR(A)"(z) holds.
Suppose 1-R™ (x,z) < A,. If I-R(y,z)< 4,, then
1-R(x,y) <v{1=R"(x,2),1-R"(y,2)} < A,. this implies A*(y)> 4, . Thus, we have

B(A)+(Z):}é\U(,ap(y)v(l—R*(z,y)))2/12 =(x,); (z) for ze U satisfying 1-R™ (x,2)< 4,.

This implies if x, < R(A), then (x;), (z)<R(A)(z) holds forall ze U .
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Therefore, if x, c R(A) , then (xﬂ)R c R(A) holds. Namely, if x, cR(A) , then
x, € (x;), € R(A)c A holds.

Hence, we have R(A)=U{(x,),:(x,), c A.Ae L.xeU}.

It is easy to prove that I_?((x/l )R) =(x;),-50 {(x/l ), :A€[I].xe U} can be employed as the basic

granular set to compute lower approximation of interval-valued fuzzy sets.

Proposition 3.1. For any x,ye U , if (x;), #(y;),.then (x,), N(y,), =9.

Proof: If (x,), N(y,), # D, then there exists ze U satisfying (x,), (z)=(y,),(z)=1.1e.
This implies 1-R* (x,z) < 4, 1-R (x,z)<A4,, I-R"(y,z)< 4 and 1-R (y,z)< 4, hold.
Thus, we have 1-R" (x,y) <v{I-R" (x,2),1-R" (y,2)} < 4 and

1-R (x,y)<v{I-R"(x,2),1-R"(y.2)} < 4, hence, y, =(x;), =R((x,),) and
x,<(3,), =R((y,),) - By Theorem 3.1, we have (x;), = R((y;),)=(»;), and

(5200 SR((52),) = (x0) - hence, (), = (0,),.

According to Theorem 3.1 and Proposition 3.1, we know that the properties of (x;) « 18 similar to
the properties for equivalence classes of a crisp equivalence relation, so (x,) . can be employed as

the equivalence class of x;.

Proposition 3.2. The following proposition holds.

(X/1 )Sim(R) :ﬂken(xl )R '
Proof: For every ze U,
(x, )Sim(R) (z2)=4 c>1—(Sim(R))+ (x,z) <4 and 1—(Sim(R))7 (x,2)<4,

= R\E/R(l—R+(x,Z))< A and R\E/R(I—R’ (x,z)) <4
©1-R'(x.z)<Aand 1-R (x,z)< A, foranyRe R
c>'(J61)R(Z):/1foranyReR

S Nen (), () =2

We complete the proof.

The facts mentioned in Theorem 3.1, Propositions 3.1 and 3.2 are the key points to our following
discussion on the structure of reduction.

Since POS,, ) (D) =U.., Sim(R)([z],).
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POSSI.M(R)(D)(x)z[ v Sim(R)([z]D )7 (x), v Sim(R)([z]D )+(x)} and U is finite, we know

€60 — 40— = zeU

vSim R)([z] )7 x) can get its max value at some Szm( ([zl]) (x) ., and

v Szm( )([z], ) (x) can get its max value at some Sim(R)([zz]D) (x) . The following

theorem implies v/ Sim(R ([z] ) (x) always can get its max value at some Sim(R)([x]D ) (x)

and M Sim(R ([z] ) (x) always can get its max value at some Sim (R ([x] )
Theorem 3.2. I (x; ), . <[z],. then (x,)g, o <[],

Proof. (xﬁ)Sim(R);[z]D implies (xl);im(a)(y)SD(Z’y) and (xl)m( )(y)SD(z,y) for each
yeU .Let y=x,and we have 4, < D(z,x) and 4, < D(z,x).So we have

(5 oy () S (5 gy (1) A4 € D(2.3) AD (2.3) < D (3) =[], ()

And
(2 )5y () 2 (2) gy (V) AL S D (2, ) A D (2,%) S D (x.y) =[], (v)

Sim(R) < [x]l) :

which imply (x,)

If A=[4,4,]=POS,y (D )(x),then there exist z,,z, € U such that

A=y sim(R)([z],) (x)=Sim(R)([z],) (x) and

A= v, sim(R)([2],) (x) )([ZZ] )*<x) which imply

(xﬂ);,-mm)(y)ﬂD(zl,y)=[zn]b(y) and (x, )¢, o (¥)<D(2,.9) =[z2], (v) forevery ye U, so
<D

(xl);im(R)(y) (x,y)=[x], (y) and (xl)Sim(R)(y )< D(x,y)=[x],(y) forevery yeU.

Therefore Sim (R ([x] ) (x)= 4 and Szm(R)([x]D )+ (x)= 4, . Namely,

A=[4.4,]=Sim(R ([x] ) . Keeping the positive region invariant after deleting attribute

from R is equivalent to keeping Sim(R)([x]D)(x) invariant for every xe U . With this

argument, we have the following theorems to characterize a relative reduction of R .

Theorem 3.3. Suppose P R, then P contains a relative reduction of R if and only if P
satisfies ( » S[x], for A=[4,4,]=Sim(R ([x] )(x). xeU .

2055



British Journal of Mathematics & Computer Science 4(14), 2046-2066, 2014

13

Proof. “= 7 If P contains a relative reduction of R, then POS,, (D) POSSW (D) . By
Theorem 32, we have A=[4.4,]=Sim(R)([x],)(x)=Sim(P )([x] )(x) . This implies

(%2 ) gy (1) <[2], (9) and (x,), ) (¥) <[], (¥) for every yeU . Hence, (x,)g, . <[],
holds.

“& 7 Since Sim(R)c Sim(P), we have Sim(R)(A)QSim(P)(A) for any Ae IF(U) which

implies Sim (R)([x],) (x)2 Sim(P)([x],) (x) an R)([x],) (x)= Sim(P Sim (P)([], ) (x) -
If (xl)SMP c[x], . then (x, Silp y)<[x], () and (x,), P)( y)<[x], (y) for every yeU .
By Theorem 3.1, this imply (x ) y) < Sim (P )([x] ) (v) and (x,)" ()< Sim(P)([x],) ()

for every yeU . Letting y=x , then we have ﬂ,SSim(P)([x]D)i(x) and

ZQSSim(P)([x]D)Jr(x) . Therefore, A=[4,4]=Sim(R ([x] ) Sim(P)([x]D)(x) which

implies POS Sim(R (D) POS Sim(P (D) . Hence, P contains a relative reduction of R .

Since PcR , we have (xﬂ)s,-m(P)Q(xﬂ)sx-m(R) . Theorem 3.3 implies that keeping

POS,x) (D)= POS,p) (D) is equivalent to keeping (x;,) sin(p) S [x], forevery xe U and

A=[4, 2] = Sim(R)([x], ) (x)

Theorem 3.4. The following two statements are equivalent.
(1) P c R contains a relative reduction of R .

(2) For every xeU and A=(A4,4,)=Sim(R ([x] )(x) (yﬂ)Sim(R)cz[x]D , then
1-Sim(P)" (x,y)> 4 or 1-Sim(P) (x,y)>4,.

Proof. (1) = (2) If P contains a relative reduction of R , then by Theorem 3.3, (x/l ) sim(p) S [x]D

for A=[4.4,]=Sim(R)([x],)(x) . xeU . If (92 )sinmy €[], - then (v;)g, o @ [x],, . This
¢(y/1)sjln(P) , by Proposition 3.1, (xl)slm( ﬂ(yl)Sim(P) = , that is

implies (x;, )Sl,m(P)

1-Sim(P)" (x,y)= 4 or 1-Sim(P) (x,y)>4,.
(2)= (@) For every xeU , A=[4.4]=Sim(R ([x] ) . (yﬂ)s,-mn cz[x]D , then
1-Sim(P)" (x,y)= 4 or 1-Sim(P) (x,y)> 4,. This implies (x2)s,, )ﬂ(yﬁ) —® (In fact,

i (5,) gy N (32) ey # D+ there exists ze U such that (x;) g, (2)=(;) ( )=A. This

Sim(P)
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implies  1-Sim(P)" (x,z)<4 ., 1-Sim(P) (x,z)<4 , 1-Sim(P)"(y,z)<4 and
1-Sim(P) (y.z)<4, . Hence, 1—Sim(P)*(x,y)s[1—Sim(P)*(x,z)v1—Sim(P) (z,y)}</11
and 1-Sim(P) (x,y)< [1—Sim(P)7 (x,z)v1-Sim(P) (z,y)} <A, . It is a contradiction.) Thus,
we have (xA)Sim(P);[x]D . By Theorem 3.3, P contains a relative reduction of R .

U
Proposition  3.3.  (y,), . @[*], if and only if Sim(R ([x]) and

sim(R)([],) (¥)<4-

Proof. = If (y,)._

sim(B) @ [x] . there exists ze U such that (y, )Sim(R)(z):ﬂ and [X]D(Z)z

D’

(34 ) gin(my (2) =4 implies 1-Sim(R)" (y,z)<4 and 1-Sim(R) (y,z)<A, . Therefore, we
have (1—Sim(R)+(y,z))v[x]D(z)</11 and (1—Sim(R)7(y,z))v[x]D(z)</12 which imply

Sim ( )([x] ) )< 4, and Szm( ([x] ) ()<

< Suppose (yl)Si g[x] . By Theorem 3.1, we have (y,) c Sim(R ([x] ) - Therefore,

Sim(R

Sim(R ([x] ) (y)= 4 and Sim(R ([x] ) )= A, . It is a contradiction.

Theorem 3.3 and 3.4 show that keeping (x;);, ) < [x], for A=(4.4,)=Sim(R ([x] )(x)

equivalent to keeping 1-Sim(P)" (x,y)> 4 or 1—Szm(P) (x,y)= 4, for (y/l)s,-m(a) «[x],, and

is equivalent to keeping (x;)g, o N(¥2)g,p) =D for (¥1)g,m @[], . and is equivalent to

Sim(R)

keeping 1—Sim(P)+(x,y)ZZ.l or 1-Sim(P) (x,y)= 4, for Sim(R ([x] ) (»)<4 and

Stm ([x] )

The statement of keeping 1—Sim(P)"(x,y)= 4 or 1-Sim(P) (x,y)> 4, for (92) iuiry <[]
(i.e. keeping 1-Sim(P)" (x,y)> 4 or 1-Sim(P) (x,y)> A4, for Sim( )([x] ) (y)<4 and

Sim(R)([x]

reductions.

D)+( y)<4,) can easily be applied to design an algorithm to compute relative

Proposition 3.4. P c R is a relative reduction of R if and only if P is the minimal subset of R
satisfying the conditions in Theorems 3.3 and 3.4.
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With the above discussion, we can develop an algorithm to compute the relative reductions.
Suppose U ={x,, -, x,} . We denote a nXn matrix (cy.) by M, (U,R), called the discernibility

matrix of (U,RU D), such that

1 ¢, :{R:I—R+ (x.x,)2 4, or 1-R (xl,x/.)z/l,z] . A =[4 ,272]=Sim(R)([xi]D)(xi),
A =[ 2,4, | =Sim(R)([x],)(x,) if 2, <4, and 2, <A,;
(2) ¢; =2, otherwise.

M, (U,R) may not be symmetric and , _ . Rec; < ((x ( ) =0 o VzeU,

1-R*(x,2)2 4, or 1-R (x,2)24, or 1-R"(x,,2)24, or 1-R (x,,2)24, = VzeU,
1-Sim(R)" (x.2)24, or 1-Sim(R) (x.2)24, or 1-Sim(R) (x,z)=4, or
1-Sim(R) ( ) = ((xi ),1, )Sim(R) ﬂ((xj ),1 )Sim(R) = . Suppose P c R contains a relative
reduction of R, then ((x,. ), )Sim(P) ﬂ((xj )4 )s,-m(p) =@ for A, <A, and 4,<A,. This implies
that there exists R e P such that ((x,, ) B ) ﬂ((xj )/1 ) = . This is equivalent to P containing an

i /R i IR
element in ¢; . Thus ¢, is the collection of attributes which can keep

(( x), )W( )ﬂ((xj)l’ )Sim(R) =@ for A, <A, and A, < 4,.

A discernibility function £, (U,R) for (U,RU D) is a Boolean function of m Boolean variables

m E, R_2 R_m corresponding to the interval-valued fuzzy attributes R,,R,,---,R , respectively,
and is defined as follows:

o (UR)(R R, R, )= a{v(c,) e, 20},

where v( U) is the disjunction of all variables R such that Re ¢, - In the sequel, E is simply

denoted without ambiguity as R, .
We have the following theorem for the relative core.

Theorem 3.5. Core, (R)={Re R:c, ={R}.1<i,j<n}.

Proof. Re Core,(R) & POS,,y (D)# POS D) < There exists x,€ U such that

Sim(R—{R}) (

Sim(R.

((x,, ),1, )Sim(P) z[x], for 4 A =[A,,4,]=Sim(R ([x] ) , and there also exists x; € U such that

((xj ),1)

Uy 0 (0] gy () - = 1SR ()<

Sim(R)
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l—Sim(R-{R})_(x,‘,xj)</1,‘2 , and ((xi),g) ;t((xj)l[)R . & 1-(R) (x.x,)<4, and

R

1—(R')7()ci,xj)</1,.2 for any R*# R, and ((x,.)l) ;ﬁ((x/.)&) Lo 1—(R')+(x,.,)cj)</1il and
. ili ),

1-(R") (x.x,)< 4, forany R"# R, and 1-R' (xi,xj) >4, or 1-R (x,x,)2 4,. o ¢, ={R}.
The statement c; = {R} implies that R is the unique attribute to maintain

((x[ )/1, )sim(R) n((xj )/1, )Sim(R) =o i ﬂjl <4, and ﬂjz <o

Theorem 3.6. If P R, then P contains a relative reduction of R if and only if P c,; * & for

every ¢, #0.

Proof. = Suppose that Ji,, j, <n, Cois * <, but Pﬂcr‘m = . Namely, VRe P, Re¢ €
Jo2 — g2 *

which implies 1—R+(xi0,xj0)</1,.n] and 1—R'(xi0,xj0)</?,,.02 for 4,,<4, and 4,,<

Hence, 1-Sim(P)" (x,‘o,xjo)</’L,‘01 and l—Sim(P)f(x,‘o,ij)</1,,02 for 4,, <4, and 4,,<4,,.

Jo2 —

This is a contradiction to the condition that P contains a relative reduction of R .

= VReP(c; . According to Definition of ¢, , we have 1—R+(xl.,xj)22.21 or
1-R (x,x,)2 4, for A, <A, and A, <A, . Therefore, 1-Sim(P)" (x,,x,)21-R" (x,,x,) 2 4,
or 1-Sim(P) (x,x,)21-R (x.,x,)2 4, for A4,<A4, and A,<A,. By Theorem 3.4, P

contains a relative reduction of R .

Corollary 3.1. Suppose Pc R, then P is a relative reduction of R if and only if P is the
minimal set satisfying P(\c; # & forevery ¢, #0.

Let g, (U,R) be the reduced disjunctive form of f,(U,R) obtained from f, (U,R) by
applying the multiplication and absorption laws, then there exist / and R, c R for k=1,2,---,]
such that g, (U,R)=(AR,)V(AR,)V---v(AR,) where each element in R, appears only one

time. We have the following theorem.

Theorem 3.7. Red,(R)={R,.,--R}.

Proof. For each k=12,---,1, we have AR, <vc,. By the disjunction and conjunction laws,
R, Nc, #@ for any ¢, #D. Since g, (U,R)=(AR,)V(AR,)Vv -V (AR,), it follows that for

arbitrary R, if we reduce an element R from R, , let R,=R,—{R} , then
1 1

k=1 k-1
g, (UR)# YI(ARr)V(AR,:)V —\k/l(ARr) and g, (U,R)< v (AR,)V(AR)V v (AR,) . If

r=k+1
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we still have R} Nc, # @ for any ¢, #J, then AR; <v¢, for any ¢, #@ . This implies that

k-1 1

v (AR,) and g,(U.R)=vV(AR,)V(AR,)Vv v (AR,) .

k-1
8p (U’R) > r\£1 (AR" ) v (AR; )V r=k+1 r=l r=k+1
k-1 1
which is a contradiction. Hence, there exists g, (U,R)# vl(/\Rr)v(/\R;)v v 1(/\Rr) and
r= r=k+

¢, #9 suchthat R, N¢,, =@, which implies that R, is a relative reduction of R .

loJ

For any XeRed,(R) , we have XQ¢,#0 for any ¢;#& . Thus
o (U,R)/\(/\X):/\(vcly)/\(/\X):(/\X) . This implies AX<f,(UR)=g,(U.R) . If
R,-X# for each k , we can find R eR —-X for each k . By rewriting

1 1
2, (U,R) =(v Rk)/\@, we have AX < v R, . So there must be R, such that AX<R,_, this
k=1 k=1 0 0

implies R, € X. This is a contradiction. So R, € X for some k,. Since both X and R, are

relative reductions, we have X =R, . Hence Red,, (R)={R,,---.R,}.

Remark 3.1. If the interval-valued fuzzy similarity relation is a fuzzy similarity relation, then the
lower approximation degenerates into the fuzzy one [43], and our method in this section coincides
with the fuzzy one found in [23]. If the interval-valued fuzzy similarity relation is a crisp
equivalence relation, then the lower approximation degenerates into the crisp one [1], and our
method in this section coincides with the crisp one found in [14]. Thus, our idea and method are
really the generalization of the fuzzy one found in [23] and the crisp one found in [14] for
interval-valued fuzzy case.

It should be noted that if ¢, Core, (R)#@, then {R}A(vc,)={R} for Re c,NCore,(R).
When computing g, (U,R) by f,(U,R) we can only consider elements in Core, (R) and ¢,

satisfying c; NCore, (R)=O so that the computational load may be reduced. We can design an
algorithm to compute reductions for interval-valued fuzzy decision systems.

Suppose U ={x,,x,,--,x,}, U/D={D,,D,,--,D,} .

Step 1: Compute Sim(R).
Step 2: Compute Sim(R)(D,) for every D, e U/D .

Step 3: Compute c; : if Ay <A and A

ij j2

<A, , then
ol :{R :1-R* (x,.,xj) 24, or 1-R° (x,.,xj) > 2,,2} , otherwise c; = .
Step 4: Compute core as collection of those ¢, with single element.

Step 5: Delete those ¢; =& and ¢; with nonempty overlap with the core.

Step 6: Define £, (U.R)=A{v(c,)} with ¢, left after Step 5.
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Step 7: Compute g, (U,R)=(AR1)V(/\R2)V-~V(AR1) by o (U,R)Z/\{\/(Cij )}

Step 8: Output all reductions RedD (R) = {R1 5" R[} .
4 An Illustrated Example

The following example of data set (adopted from the [44,45] with some modifications) is
employed to illustrate our idea in Section 3.

Example 4.1. The car data set contains the information of ten new cars. Let U = {xl , x2,~~~,xm} be
the cars, each of which is described by six attributes: (1) C,: fuel economy; (2) C,: aerod degree;
(3) C,: price; (4) C,: comfort; (5) Cj: design; and (6) Cj: safety. The characteristics of the ten

new cars under the six attributes are represented by the interval-valued fuzzy sets, as shown in
Table 1.

Every IVF attribute C, can define an IVF similarity relation R, as

R (x,x,)=1_
( : 1, Ck(xi): k(x,)

Table 1. The car data set
U C C, C, C, C; C,
X, [0.3,0.4] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.6,0.7] [0.2,0.7]
X, [0.6,0.8] [0.6,0.7] [0.2,0.3] [0.5,0.6] [0.7,0.8] [0.3,0.9]
x, [0.5,0.8] [0.7,0.8] [0.5,0.5] [0.2,0.3] [0.4,0.6] [0.5,0.8]
X, [0.2,0.3] [0.5,0.7] [0.6,0.7] [0.4,0.5] [0.6,0.9] [0.4,0.7]
X [0.6,0.8] [0.3,0.5] [0.4,0.6] [0.6,0.8] [0.5,0.6] [0.6,0.6]
X, [0.4,0.6] [0.3,0.5] [0.3,0.6] [0.7,0.8] [0.4,0.5] [0.2,0.7]
X, [0.6,0.7] [0.4,0.5] [0.7,0.8] [0.3,0.6] [0.3,0.7] [0.1,0.6]
X, [0.7,0.7] [0.3,0.9] [0.1,0.2] [0.4,0.5] [0.4,0.5] [0.8,0.9]
X [0.4,0.5] [1,1] [0.4,0.5] [0.6,0.7] [0.2,0.7] [0.1,0.8]
X0 [0.7,0.8] [0.5,0.9] [0.3,0.4] [0.5,0.9] [0.5,0.7] [0.4,0.6]

Sim(R) can be computed as
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1 [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.2,0.4] [0.3,04] [0.1,0.4] [0.1,0.2] [0.1,0.4] [0.2,0.4]
[0.2,0.3] 1 [0.2,03] [0.2,0.3] [0.2,03] [0.2,0.3] [0.1,0.3] [0.1,0.2] [0.1,0.3] [0.2,0.3]
[0.2,03] [0.2,0.3] 1 [0.2,0.3] [0.2,0.3] [0.2,03] [0.1,0.3] [0.1,02] [0.1,0.3] [0.2,0.3]
[0.2,03] [0.2,0.3] [0.2,0.3] 1 [0.2,03] [0.2,0.3] [0.1,0.3] [0.1,0.2] [0.1,0.3] [0.2,0.3]
) [0.2,0.4] [0.2,0.3] [0.2,0.3] [0.2,0.3] 1 [0.2,0.5] [0.1,0.5] [0.1,0.2] [0.1,0.5] [0.3,0.4]
Sim(R)(x,,x,) = B
[0.3,04] [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.2,0.5] 1 [0.1,0.5] [0.1,0.2] [0.1,0.5] [0.2,0.4]
[0.1,0.4] [0.1,0.3] [0.1,0.3] [0.1,0.3] [0.1,0.5] [0.1,0.5] 1 [0.1,0.2] [0.1,0.5] [0.1,0.4]
[0.1,02] [0.1,0.2] [0.1,02] [0.1,0.2] [0.1,0.2] [0.1,0.2] [0.1,0.2] 1 [0.1,0.2] [0.1,0.2]
[0.1,04] [0.1,0.3] [0.1,0.3] [0.1,0.3] [0.1,0.5] [0.1,0.5] [0.1,0.5] [0.1,0.2] 1 [0.1,0.4]
[0.2,04] [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.3,04] [0.2,0.5] [0.1,0.4] [0.1,02] [0.1,0.4] 1
Suppose a decision partition is A ={x,,x,,X,,%,,%}, B={x;, %, %,,%.%,] then
[0.6,0.7],x = x, [0.7,0.8],x = x,
[0.7,0.8],x=x, [0.5,0.8], x = x
. [0.7,0.8], x = x, [0.5,0.7],x = x
Sim(R)(A)(x) = ~ Sim(R)(B)(x) = °
— [05,09],)6 =X e [08, 0.9],X =Xg
[0.5,0.9],x = x, [0.6,0.8], x = x,,
[0,0], other [0,0], other
and the discernibility matrix M, (U ,R) of (cij) is as follows:
1%} %) {1,4,6} %] {1,2,6} {1,2,3} %] {1,2,3,6} %] {1,3,6}
(3,6} %) (3,4} %) 3} (3,6} %) (3} @ (3}
(4,6} (3,4) @ (1,4} @ {4,6} (4,6} @ {4.5.6} %
(1,6} %) (14} @ {1 {1,6} %) {1.3} @ o
1,2,6) {23} %) {1,2,4) @ @ {2,6) @ {12356} @
{1,2,3,5) {2,3,5,6} @ {1,2,3,4,5,6} 1%} %) {2.3,4,5,6} %) {1.2,356} @
% @ {23.4,6) @ 2,6}  {2,5.6) %) {2,3,4,5,6} % {2,3,6}
{3} {3} {3} {3} {3} {3} {3,6} %) {3,6} {3}
%) %) {1,3,4,6} @ {1,2,3,6} {1,2,3,5,6} %) {1,3,4,5,6} @ {1,3.6}
1L36) (3} @ {13} @ (3.6} {3.6) o (35,6 o

We can get that Core,, (R)={C,,C,} and

RedD (R) :{{CI’CZ’C3’C4} ’{CI’CZ’C’J"CG} ’{C17C3’C6}} .

Based on the above analysis, we can see that the proposed Algorithm has a less computational

complexity.
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5 Conclusion

The aim of this paper is to focus on attributes reduction based on interval-valued fuzzy rough sets.
After reviewing attributes reduction with traditional rough sets, some equivalent conditions to
describe the relative reduction based on interval-valued fuzzy rough sets are proposed, and the
structure of reduction is completely examined. An algorithm based on discernibility matrix to
compute all the attributes reductions has been developed. At last the concepts of attributes
reduction have been demonstrated by an example. This work may be viewed as the extension of
[14] and [23] in the interval-valued fuzzy environment. In the future, our work will focus on the
two facets. On one hand, we will study computational complexity of the proposed algorithm in
this paper. On the other hand, we will concentrate our discussion on some fast algorithms to
compute attributes reduction.
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