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Abstract 

 
Aims: This paper provides a systematic study on attribute reduction with interval-valued fuzzy 

rough sets. 

Study Design: The interval-valued fuzzy rough sets are an important improvement of 

traditional rough set model to deal with both fuzziness and vagueness in data which the 

traditional one cannot handle.  

Place and Duration of Study: The existing researches on interval-valued fuzzy rough sets 

mainly focus on the establishment of lower and upper approximation operators by using 

constructive and axiomatic approaches. Less effort has been put on the attributes reduction of 

databases based on interval-valued fuzzy rough sets. 

Methodology: After introducing some concepts and theorems of attributes reduction with 

interval-valued fuzzy rough sets, we study the structure of the attributes reduction with 

interval-valued fuzzy rough sets and present an algorithm by using discernibility matrix to find 

all the attributes reductions with interval-valued fuzzy rough sets. 

Results: Finally, we propose an example to demonstrate our idea and method in this paper.  

Conclusion: With these discussions we construct a basic foundation for attributes reduction 

based on interval-valued fuzzy rough sets. 

 

Keywords: Interval-valued fuzzy rough sets, rough sets, attributes reduction, discernibility matrix. 

 

1 Introduction 

 
Rough set theory, originally proposed by Pawlak [1], can be regarded as an effective mathematical 

vehicle for dealing with imprecise and ambiguous data analysis. This theory has been 

demonstrated to have its usefulness and versatility in successfully solving a variety of problems 

[2-4]. The theory of rough sets deals with the approximation of an arbitrary subset of a universe 

by two definable subsets called lower and upper approximations. By using the concepts of lower 

and upper approximations in rough set theory, knowledge hidden in information systems may be 
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unraveled and expressed in the form of decision rules [5-8]. The concept of attributes reduction 

can be viewed as the strongest and most important results in rough sets theory to distinguish itself 

from other theories. Many studies of attributes reduction with rough sets could be found in the 

literature [9-20]. For example, Tsang and Chen et al. [21,22] discussed attribute reduction with 

covering rough sets. Tsang et al. [23] introduced formal concepts of attributes reduction with 

fuzzy rough sets and completely studied the structure of attributes reduction. They also developed 

an algorithm using discernibility matrix to compute all the attributes reductions. Wang et al. [24] 

provided a systematic study on attribute reduction with rough sets based on general binary 

relations. 

 

Interval-valued fuzzy (IVF for short) sets [25,26] is a natural extensions of Zadeh’s fuzzy sets 

[27], which were conceived independently to avoid some of the defects of fuzzy sets. IVF set 

theory emerges from the observation that in a lot of cases, no objective procedure is available to 

select the crisp membership degrees of elements in a fuzzy set. Hence, the grade of membership of 

an element in the universe of discourse belonging to an interval-valued fuzzy set is represented by 

an interval in [ ]0,1 . The interval-valued fuzzy sets are more precise and flexible to model 

vagueness and uncertainty in practice than those of fuzzy sets. They have been applied to different 

research fields [28-39]. Recently, some authors extended rough set theory into IVF sets [40-42]. 

For example, Gong et al. [40] combined the interval-valued fuzzy sets and the rough sets, and 

studied the basic theory of the interval-valued rough fuzzy sets. Sun et al. [41] presented an 

interval-valued fuzzy rough set model by means of integrating the classical Pawlak rough set 

theory with the interval-valued fuzzy set theory, investigated knowledge reduction of the interval-

valued fuzzy information system, and obtained some knowledge reduction theorems. Zhang et al. 

[42] proposed a general study of ( ),I T -interval-valued fuzzy rough sets on two universes of 

discourse integrating the rough set theory with the interval-valued fuzzy set theory by constructive 

and axiomatic approaches. 

 

It is well known that any generalization of traditional rough set theory should address two 

important theoretical issues. The first one is to present reasonable definitions of set approximation 

operators, and the second one is to develop reasonable algorithms for attributes reduction. It 

should be noted that the existing interval-valued fuzzy rough sets mainly pay attention to 

constructing approximation operators. The study for the attributes reduction of interval-valued 

fuzzy rough sets is still blank. It should be noted that the values of attributes could be denoted by 

interval-valued fuzzy sets [29,33,34,38]. It is hard to deal with such attributes for the traditional 

rough sets and fuzzy rough sets. In view of the requirement of possible applications and the 

complement of theoretical aspect of rough sets, it is interesting and important to construct the 

attributes reduction with interval-valued fuzzy rough sets. This paper systematically studies 

attribute reduction with interval-valued fuzzy rough sets. The structure of reduction is completely 

investigated and an algorithm using discernibility matrix to find all the attributes reductions is 

proposed. 

 

The rest of the paper is structured as follows. Section 2 presents the fundamentals of Pawlak’s 

rough sets, and reviews some basic notions of interval-valued fuzzy rough sets. In Section 3, we 

present the concept of attributes reduction with interval-valued fuzzy rough sets, and develop an 

algorithm using discernibility matrix to compute all the attributes reductions. An illustrated 

example is proposed in Section 4. Finally, some concluding remarks are presented in Section 5. 
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2 Preliminaries 

 
2.1 Rough Sets Attributes Reduction 
 
The following basic concepts about Pawlak’s rough sets can be found in [1,14,23]. 

 

An information system is a pair ( ),U A=A , where { }1 2, , ,
n

U x x x= ⋯  is a nonempty finite set of 

objects and { }1 2, , ,
m

A a a a= ⋯  is a nonempty finite set of attributes. With every subset of 

attributes B A⊆  we associate a binary relation ( )BIND , called B -indiscernibility relation, and 

defined as ( ) ( ) ( ) ( ){ }, : ,B x y U U a x a y a B= ∈ × = ∀ ∈IND . ( )BIND  is obviously an 

equivalence relation and ( ) { }( )a BB a∈= ∩IND IND . By [ ]
B

x  we denote the equivalence class of 

( )BIND  including x . For any subset X U⊆ , ( ) [ ]{ }:
B

B X x U x U= ∈ ⊆  and

( ) [ ]{ }:
B

B X x U x U= ∈ ≠ ∅∩ are called B -lower and B -upper approximations of X  in A , 

respectively.  

 

By ( )M A  we denote a n n×  matrix ( )ijc , called the discernibility matrix of A , such that 

( ) ( ){ }:
ij i j

c a A a x a x= ∈ ≠  for , 1,2, ,i j n= ⋯ . A discernibility function ( )f A  for an 

information system ( ),U A=A  is a Boolean function of m  Boolean variables 
1 2, , ,

m
a a a⋯  

corresponding to the attributes
1 2
, , ,

m
a a a⋯ , respectively, and defined as 

 

 

 

where ( )ijc∨  is the disjunction of all variables a  such that 
ij

a c∈ . 

An attribute a B A∈ ⊆  is superfluous in B  if ( ) { }( )B B a= −IND IND , otherwise a  is 

indispensable in B . 

 

The collection of all indispensable attributes in A  is called the core of A . We say that B A⊆  is 

independent in A  if every attribute in B  is indispensable in B . B A⊆  is called a reduction in A  

if B  is independent and ( ) ( )B A=IND IND . The set of all the reductions in A  is denoted as 

( )Red A . Let ( )g A  be the reduced disjunctive form of ( )f A  obtained from ( )f A  by applying 

the multiplication and absorption laws, then there exist l  and 
kX A⊆  for 1,2, ,k l= ⋯  such that 

( ) ( ) ( ) ( )1 2 l
g X X X= ∧ ∨ ∧ ∨ ∨ ∧⋯A  where each element in kX  appears only one time. We have 

( ) { }1 , ,
l

Red X X= ⋯A . 

 

A decision system is a pair { }( ),U A a
∗ ∗= ∪A , where a

∗
 is the decision attribute, A  is condition 

( )( ) ( ){ }1 2
, , , :1

m ij
f a a a c j i n= ∧ ∨ ≤ < ≤⋯A
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attribute set. We say a B A∈ ⊆  is relatively dispensable in B  if ( ) { } ( )B B a
POS a POS a

∗ ∗

−
= , 

otherwise a  is said to be relatively indispensable in B , where ( )B
POS a

∗
 is the union of B -

lower approximation of all the equivalence classes induced by a
∗

, i.e., 

( ) ( )B X U a
POS a B X∗

∗

∈
= ∪ . If every attribute in B  is relatively indispensable in B , we say that 

B A⊆  is relatively independent in ∗
A . B A⊆  is called a relative reduction in ∗

A  if B  is 

relatively independent in 
∗
A  and ( ) ( )B A

POS a POS a
∗ ∗= . The collection of all relatively 

indispensable attributes in A  is called the relative core of 
∗
A . 

 

Suppose ( ) ( )ijM c
∗ =A . We denote a matrix ( ) ( )ij

∗ =M A c  in the following way: 

 

(1)  , if (
ij

a c∗ ∈  and ( ),i j Ax x POS a
∗∈ ) or ( ) ( )i jpos x pos x≠ ; 

(2)  
ij

= ∅c , otherwise. 

 

Here { }: 0,1pos U →  is defined as ( ) 1pos x =  if and only if ( )Ax POS a
∗∈ . All the relative 

reductions can be computed in an analogous way as reductions of ( )M A . 

 

2.2 Interval-valued Fuzzy Rough Sets 

 

Throughout this paper, let I  be a closed unit interval, i.e., [ ]0,1I = . Let 

[ ] [ ]{ }, : , ,I a b a b a b I= ≤ ∈ . For any a I∈ , define [ ],a a a= . Let U  be an ordinary nonempty 

set, and ( )P U  be the power set of U . 

 

Definition 2.1 [40,41]. If { }, , 1, 2, ,
i

a I i J J m∈ ∈ = ⋯ , we define 

 

, , 

 

, [ ] [ ], ,
i J i i i J i i J i

a b a b∈ ∈ ∈∧ = ∧ ∧ . 

 

In particular, for , we define 

 

 iff 
1 2 1 2

,a a b b= = ; 

 

[ ] [ ]1 1 2 2, ,a b a b≤  iff ; 

 

[ ] [ ]1 1 2 2, ,a b a b<  iff [ ] [ ]1 1 2 2, ,a b a b≤ , [ ] [ ]1 1 2 2, ,a b a b≠ . 

 

The complement of [ ]1 1,a b  is denoted by [ ] [ ] [ ]1 1 1 1 1 1, 1 , 1 ,1
c

a b a b b a= − = − − . 

{ }ij ijc a
∗= −c

{ }sup :
i J i i

a a i J∈∨ = ∈ { }inf :
i J i i

a a i J∈∧ = ∈

[ ] [ ], ,
i J i i i J i i J i

a b a b∈ ∈ ∈∨ = ∨ ∨

[ ] [ ], , 1, 2
i i

a b I i∈ =

[ ] [ ]1 1 2 2
, ,a b a b=

1 2 1 2,a a b b≤ ≤
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Definition 2.2 [40,41]. The mapping [ ]:A U I→  is called an interval-valued fuzzy set in U . All 

interval-valued fuzzy set on U  are denoted as ( )IVF U U× . If ( )A IVF U U∈ × , let 

( ) ( ) ( ),A x A x A x
− + =   , where x U∈ , then two fuzzy sets :A U I

− → , and :A U I
+ →  are 

called the lower fuzzy set and the upper fuzzy set about A , respectively. 

 

Obviously, every fuzzy set A  can be identified with the interval-valued fuzzy set of the form 

. 

 

Let U  be a non-empty finite universe. A binary interval-valued fuzzy subset R  of U U×  is 

called an interval-valued fuzzy relation in U . 

 

Some basic operations on ( )IVF U  are defined as follows: 

 

, 

 if and only if (iff)  and  for all , 

 iff , 

 iff  and , i.e.,  and  for all , 

 

, 

 

. 

 

For [ ] [ ], Iα β ∈ , [ ],α β  will be denoted by the constant interval-valued fuzzy set: 

[ ]( ) [ ], ,xα β α β=  for all x U∈ . The interval-valued fuzzy universe set is 1U = , and the interval-

valued fuzzy empty set is 0∅ = . 

 

Definition 2.3 [41]. For the interval-valued fuzzy relation ( )R IVF U U∈ × , we say that 

 

(1)  R  is reflexive if ( ), 1R x x =  for all x U∈ , 

(2)  R  is symmetric if for all , ( ) ( ), ,R x y R y x= , 

(3) R  is transitive if for all ( ),x z U U∈ × , . 

 

If the fuzzy relation R  is reflexive, symmetric and transitive, then R  is an interval-valued fuzzy 

equivalence relation. 

 

The similarity class  (interval-valued fuzzy equivalence class) with x U∈  is an interval-

valued fuzzy set on U  defined by [ ] ( ) ( ),
R

x y R x y=  for all y U∈ . 

 

The collection of all interval-valued fuzzy similarity classes can be denoted as U R . 

( ) ( ){ },A x A x x U∈  

( ),A B I V F U∀ ∈

A B⊆ ( ) ( )A x B x− −≤ ( ) ( )A x B x+ +≤ x U∈

A B⊇ B A⊆

A B= A B⊆ B A⊆ ( ) ( )A x B x− −= ( ) ( )A x B x+ += x U∈

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,A B x A x A x B x B x A x B x A x B x− + − + − − + +     = ∧ = ∧ ∧     ∩

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,A B x A x A x B x B x A x B x A x B x− + − + − − + +     = ∨ = ∨ ∨     ∪

( ),x y U U∈ ×

( ) ( ) ( ), , ,
y U

R x z R x y R y z∈≥ ∨ ∧  

[ ]
R

x
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Definition 2.4 [41]. Let U be a nonempty finite universe and ( )R IVF U U∈ × . ( ),U R  is called 

an interval-valued fuzzy approximation space. For any ( )A IVF U∈ , the upper and lower 

approximations of A  about ( ),U R , denote by ( )R A  and ( )R A , are two interval-valued fuzzy 

sets and are, respectively, defined as follows: 

 

x U∀ ∈ , 

 

, 

 

( )( ) ( ) ( )( ){ }min 1 , :R A x A y R x y y U= ∨ − ∈ . 

 

If for any x U∈ , ( )( ) ( )( )R A x R A x= , then the interval-valued fuzzy set A  is definable about 

interval-valued fuzzy approximation space ( ),U R . Or else the interval-valued fuzzy set A  is 

rough about the interval-valued fuzzy approximation space, and A is called an interval-valued 

fuzzy rough set. Meanwhile, the mappings ( ) ( ):R IF U IF U→ and ( ) ( ):R IF U IF U→ are 

referred to as the lower interval-valued fuzzy rough approximation operator and upper interval-

valued fuzzy rough approximation operator. 

 

Clearly, the above definition implies equivalences of the following form: 

 

, 

 

 

 

 

 

Theorem 2.1 [41]. Let U  be a nonempty and finite universe of discourse and 

( )1 2, ,R R R IVF U U∈ × . Then the upper and lower approximation operators in Definition 2.4 

satisfy the following properties: 

( ),A B IVF U∀ ∈ , 

 

(1) , ( ) ( ) ( )R A B R A R B=∪ ∪ , 

(2) ( ) ( )R A R A=∼ ∼ , , 

(3) , , 

(4) ( ) ( ) ( ) ( ), ,A B R A R B R A R B⊆ ⊆ ⊆ , 

( )( ) ( ) ( ){ }max , :R A x A y R x y y U= ∧ ∈

x U∀ ∈

( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

,

, , , ,

y U

y U y U

R A x A y R x y

A y R x y A y R x y

∈

− − + +

∈ ∈

= ∨ ∧

 = ∨ ∧ ∨ ∧
  

( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )

1 ,

1 , , 1 , .

y U

y U y U

R A x A y R x y

A y R x y A y R x y

∈

− + + −

∈ ∈

= ∧ ∨ −

 = ∧ ∨ − ∧ ∨ −
  

( ) ( ) ( )R A B R A R B=∩ ∩

( ) ( )R A R A=∼ ∼

( ) ( ) ( )R A B R A R B⊇∪ ∪ ( ) ( ) ( )R A B R A R B⊆∩ ∩
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(5) , ( )( ) ( ) ( ), ,R A R Aα β α β=∪ ∪ , 

(6) ( ) ( )1 2 1 2R R R A R A⊆ ⇒ ⊇ , ( ) ( )1 2 1 2R R R A R A⊆ ⇒ ⊆ . 

                                                                                                                                                                                           

3 Attributes Reduction Based on Interval-Valued Fuzzy Rough 

Sets 

 
In this section we will define attribute reduction based on interval-valued fuzzy rough sets for 

interval-valued fuzzy decision system and propose some equivalence conditions to describe the 

structure of attribute reduction. We also develop an algorithm using discernibility matrix to 

compute all the attribute reductions. 

 

Following the attributes with IVF values will be called IVF attributes [23]. For every IVF 

attribute, an IVF similarity relation can be employed to measure the similar degree between every 

pair of objects [23]. If we substitute every IVF attribute by its corresponding IVF similarity 

relation and substitute the decision attribute by its corresponding equivalence relation, we can get 

an IVF decision system consisting of three parts, a finite universe of discourse, a family of IVF 

similarity relations and a crisp equivalence relation [23]. Thus every dataset with IVF value 

conditional attributes and symbolic decision attribute can be expressed as an IVF decision system 

so that it is convenient to deal with by techniques of IF rough sets [23]. 

 

Two key problems must be solved before we define attribute reduction based on IVF rough sets 

[23]. One is what should be invariant after reduction [23]. We employ the idea in traditional rough 

sets of keeping the positive region of decision attribute invariant to define relative reduction with 

IVF rough sets; here the positive region of decision attribute will be defined as the union of lower 

approximations of decision classes [23]. Another problem is the selection of aggregation operator 
for several IVF similarity relations [23]. By Theorem 2.1(6), a smaller IVF similarity relation can 

provide more precise lower approximations, thus triangular Min  is a reasonable selection of 

aggregation operator for several IVF similarity relations [23]. We can define attribute reduction 

for IVF decision system based on IVF rough sets with these discussions [23]. 

 

Suppose U  is a finite universe of discourse, R  is a finite set of interval-valued fuzzy similarity 

relations called conditional attributes set, D  is an equivalence relation called decision attribute 

with symbolic values, then ( ),U D∪R  is called an interval-valued fuzzy decision system. Denote 

( ) { }:Sim R R= ∈∩R R , then ( )Sim R  is also an interval-valued fuzzy similarity relation. 

Suppose [ ]
D

x  is the equivalence class with respect to D  for x U∈ , then the positive region of D  

relative to ( )Sim R  is defined as 
( ) ( ) ( ) [ ]( )x USim D

POS D Sim x∈= ∪
R

R . We say that R  is 

dispensable relative to D  in R  if , otherwise we will say R  is 

indispensable relative to D  in R . The family R  is independent relative to D  if each R ∈R  is 

indispensable relative to D  in R ; otherwise R  is dependent relative to D . ⊆P R  is an 

attributes reduction of relative to D  if P  is independent relative to D  and 

( ) ( ) ( ) ( )Sim Sim
POS D POS D=

R P
, for short we call P  a relative reduction of R . The collection of 

all the indispensable elements relative to D  in R  is called the core of R  relative to D , denoted 

( )( ) ( ) ( ), ,R A R Aα β α β=∩ ∩

( ) ( ) { }( ) ( )Sim Sim R
POS D POS D

−
=

R R
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as ( )Core R . Similar to the result in traditional rough sets we have ( ) ( )Core Red= ∩R R , 

( )Red R  is the collection of all relative reductions of R . Following we study under what 

conditions that ⊆P R  could be a relative reduction of R  [23]. 

 

We define an interval-valued fuzzy point xλ  as , where [ ] [ ]1 2, Iλ λ λ= ∈ . It is 

obvious that 
( )A x

A xλ
λ ≤

= ∪  for any . Define 

, ,  for any x U∈  and 

[ ] [ ]1 2, Iλ λ λ= ∈ . Clearly, we have ( )
R

x xλ λ⊆ . 

 

Theorem 3.1. ( ) ( ) ( ) [ ]{ }: , ,
R R

R A x x A I x Uλ λ λ= ⊆ ∈ ∈∪ . 

 

Proof: ( ) ( ) ( ) [ ]{ }: , ,
R R

R A x x A I x Uλ λ λ⊇ ⊆ ∈ ∈∪  is clear. 

 

If ( )x R Aλ ⊆ , then we have ( ) ( )( )( ) 1
1 ,

y U
A y R x y λ− +

∈
∧ ∨ − ≥ , thus if ( ) 11 ,R x y λ+− < , then 

( ) 1A y λ− ≥  must hold. 

 

If ( ) 11 ,R x z λ+− ≥ , then ( ) ( ) 0
R

x zλ

−
= , so ( ) ( ) ( ) ( )

R
x z R A zλ

− −
≤  holds. 

 

Suppose ( ) 11 ,R x z λ+− < . If ( ) 11 ,R y z λ+− < , then 

( ) ( ) ( ){ } 11 , 1 , ,1 ,R x y R x z R y z λ+ + +− ≤ ∨ − − < , this implies ( ) 1A y λ− ≥ . Thus, we have 

( ) ( ) ( ) ( )( )( ) ( ) ( )11 ,
Ry U

R A z A y R z y x zλλ
− −− +

∈
= ∧ ∨ − ≥ =  for z U∈  satisfying ( ) 11 ,R x z λ+− < .  

 

This implies if ( )x R Aλ ⊆ , then  ( ) ( ) ( ) ( )
R

x z R A zλ

− −
≤  holds for all z U∈ . 

 

On the other hand, If ( )x R Aλ ⊆ , then we have ( ) ( )( )( ) 2
1 ,

y U
A y R x y λ+ −

∈
∧ ∨ − ≥ , thus if 

( ) 21 ,R x y λ−− < , then ( ) 2A y λ+ ≥  must hold. 

 

If ( ) 21 ,R x z λ−− ≥ , then ( ) ( ) 0
R

x zλ

+
= , so ( ) ( ) ( ) ( )

R
x z R A zλ

+ +
≤  holds. 

Suppose ( ) 21 ,R x z λ−− < . If ( ) 21 ,R y z λ−− < , then 

( ) ( ) ( ){ } 21 , 1 , ,1 ,R x y R x z R y z λ− − −− ≤ ∨ − − < , this implies ( ) 2A y λ+ ≥ . Thus, we have 

 for z U∈  satisfying ( ) 21 ,R x z λ−− < .  

This implies if ( )x R Aλ ⊆ , then  ( ) ( ) ( ) ( )
R

x z R A zλ

+ +
≤  holds for all z U∈ . 

( )
, ,

0, .

z x
x z

z x
λ

λ =
= 

≠

( )A IVF U∈

( ) ( )
( ) ( )

( ) ( )
1 2

1 2

0, 1 , 1 ,

, 1 , 1 , .
R

R x z or R x z
x z

R x z and R x z
λ

λ λ

λ λ λ

+ −

+ −

 − ≥ − ≥
= 

− < − <
z U∈

( ) ( ) ( ) ( )( )( ) ( ) ( )21 ,
Ry U

R A z A y R z y x zλλ
+ ++ −

∈
= ∧ ∨ − ≥ =
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Therefore, if ( )x R Aλ ⊆ , then  ( ) ( )
R

x R Aλ ⊆  holds. Namely, if ( )x R Aλ ⊆ , then  

( ) ( )
R

x x R A Aλ λ⊆ ⊆ ⊆  holds. 

 

Hence, we have .                                         

 

It is easy to prove that ( )( ) ( )
R R

R x xλ λ= , so ( ) [ ]{ }: ,
R

x I x Uλ λ ∈ ∈  can be employed as the basic 

granular set to compute lower approximation of interval-valued fuzzy sets. 

 

Proposition 3.1. For any ,x y U∈ , if ( ) ( )
R R

x yλ λ≠ , then . 

 

Proof: If ( ) ( )
R R

x yλ λ ≠ ∅∩ , then there exists z U∈  satisfying ( ) ( ) ( ) ( )
R R

x z y zλ λ λ= = , i.e. 

This implies ( ) 11 ,R x z λ+− < , ( ) 21 ,R x z λ−− < , ( ) 11 ,R y z λ+− <  and ( ) 21 ,R y z λ−− <  hold. 

Thus, we have ( ) ( ) ( ){ } 1
1 , 1 , ,1 ,R x y R x z R y z λ+ + +− ≤ ∨ − − <  and 

( ) ( ) ( ){ } 21 , 1 , ,1 ,R x y R x z R y z λ− − −− ≤ ∨ − − < , hence, ( ) ( )( )
R R

y x R xλ λ λ⊆ =  and 

( ) ( )( )
R R

x y R yλ λ λ⊆ = . By Theorem 3.1, we have ( ) ( )( ) ( )
R R R

x R y yλ λ λ⊆ =  and 

( ) ( )( ) ( )
R R R

y R x xλ λ λ⊆ = , hence, ( ) ( )
R R

x yλ λ= .                                                   

 

According to Theorem 3.1 and Proposition 3.1, we know that the properties of ( )
R

xλ  is similar to 

the properties for equivalence classes of a crisp equivalence relation, so ( )
R

xλ  can be employed as 

the equivalence class of xλ . 

 

Proposition 3.2. The following proposition holds. 

 

( ) ( ) ( )
Sim RR

x xλ λ∈
=∩R R

. 

 

Proof: For every z U∈ , 

 

 

We complete the proof.  

 

The facts mentioned in Theorem 3.1, Propositions 3.1 and 3.2 are the key points to our following 

discussion on the structure of reduction. 

Since ,  

( ) ( ) ( ){ }: , ,
R R

R A x x A L x Uλ λ λ= ⊆ ∈ ∈∪

( ) ( )
R R

x yλ λ = ∅∩

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

1 , 1 ,

1 , 1 ,

1 , 1 ,

.

Sim

R R

R

RR

x z Sim x z and Sim x z

R x z and R x z

R x z and R x z for any R

x z for any R

x z

λ

λ

λ

λ λ λ

λ λ

λ λ

λ

λ

+ −

+ −

∈ ∈

+ −

∈

= ⇔ − < − <

⇔ ∨ − < ∨ − <

⇔ − < − < ∈

⇔ = ∈

⇔ =∩

R

R R

R

R R

R

R

( ) ( ) ( ) [ ]( )z USim D
POS D Sim z∈= ∪

R
R
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( ) ( )( ) ( ) [ ]( ) ( ) ( ) [ ]( ) ( ),
Sim D Dz U z U

POS D x Sim z x Sim z x
− +

∈ ∈

 = ∨ ∨  R
R R  and U  is finite, we know 

( ) [ ]( ) ( )
Dz U

Sim z x
−

∈
∨ R  can get its max value at some ( ) [ ]( ) ( )1 D

Sim z x
−

R , and 

( ) [ ]( ) ( )
Dz U

Sim z x
+

∈
∨ R  can get its max value at some ( ) [ ]( ) ( )2 D

Sim z x
+

R . The following 

theorem implies ( ) [ ]( ) ( )
Dz U

Sim z x
−

∈
∨ R  always can get its max value at some ( ) [ ]( ) ( )

D
Sim x x

−

R

, and ( ) [ ]( ) ( )
Dz U

Sim z x
+

∈
∨ R  always can get its max value at some ( ) [ ]( ) ( )

D
Sim x x

+

R . 

 

Theorem 3.2. If ( ) ( ) [ ]
Sim D

x zλ ⊆
R

, then ( ) ( ) [ ]
Sim D

x xλ ⊆
R

. 

 

Proof. ( ) ( ) [ ]
Sim D

x zλ ⊆
R

 implies ( ) ( ) ( ) ( ),
Sim

x y D z yλ

−
≤

R
 and ( ) ( ) ( ) ( ),

Sim
x y D z yλ

+
≤

R
for each 

y U∈ . Let y x= , and we have ( )1 ,D z xλ ≤  and ( )2 ,D z xλ ≤ . So we have 

 

 

 

And 

 

 

 

which imply ( ) ( ) [ ]
Sim D

x xλ ⊆
R

.                                                                 

 

If [ ] ( ) ( )( )1 2,
Sim

POS D xλ λ λ= =
R

, then there exist 
1 2
,z z U∈  such that 

 and 

( ) [ ]( ) ( ) ( ) [ ]( ) ( )2 2D Dz U
Sim z x Sim z xλ

+ +

∈
= ∨ =R R  which imply 

( ) ( ) ( ) ( ) [ ] ( )1 1,
Sim D

x y D z y z yλ

−
≤ =

R
 and  for every y U∈ , so 

( ) ( ) ( ) ( ) [ ] ( ),
Sim D

x y D x y x yλ

−
≤ =

R
 and ( ) ( ) ( ) ( ) [ ] ( ),

Sim D
x y D x y x yλ

+
≤ =

R
 for every y U∈ .  

 

Therefore ( ) [ ]( ) ( ) 1D
Sim x x λ

−

≥R  and ( ) [ ]( ) ( ) 2D
Sim x x λ

+

≥R . Namely,  

[ ] ( ) [ ]( )( )1 2,
D

Sim x xλ λ λ= = R . Keeping the positive region invariant after deleting attribute 

from R  is equivalent to keeping ( ) [ ]( ) ( )
D

Sim x xR  invariant for every x U∈ . With this 

argument, we have the following theorems to characterize a relative reduction of R . 

 

Theorem 3.3. Suppose ⊆P R , then P  contains a relative reduction of R  if and only if P  

satisfies ( ) ( ) [ ]
Sim D

x xλ ⊆
P

 for [ ] ( ) [ ]( )( )1 2,
D

Sim x xλ λ λ= = R , x U∈ . 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )1
, , ,

Sim Sim D
x y x y D z y D z x D x y x yλ λ λ

− −
≤ ∧ ≤ ∧ ≤ =

R R

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )2 , , ,
Sim Sim D

x y x y D z y D z x D x y x yλ λ λ
+ +

≤ ∧ ≤ ∧ ≤ =
R R

( ) [ ]( ) ( ) ( ) [ ]( ) ( )1 1D Dz U
Sim z x Sim z xλ

− −

∈
= ∨ =R R

( ) ( ) ( ) ( ) [ ] ( )2 2
,

Sim D
x y D z y z yλ

+
≤ =

R
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Proof. “⇒ ” If P  contains a relative reduction of R , then ( ) ( ) ( ) ( )Sim Sim
POS D POS D=

R P
. By 

Theorem 3.2, we have [ ] ( ) [ ]( )( ) ( ) [ ]( )( )1 2,
D D

Sim x x Sim x xλ λ λ= = =R P . This implies 

( ) ( ) ( ) [ ] ( )
Sim D

x y x yλ

−
≤

P
 and ( ) ( ) ( ) [ ] ( )

Sim D
x y x yλ

+
≤

P
 for every y U∈ . Hence, ( ) ( ) [ ]

Sim D
x xλ ⊆

P
 

holds. 

 

“ ⇐ ” Since ( ) ( )Sim Sim⊆R P , we have ( )( ) ( )( )Sim A Sim A⊇R P  for any ( )A IF U∈  which 

implies ( ) [ ]( ) ( ) ( ) [ ]( ) ( )
D D

Sim x x Sim x x
− −

≥R P  and ( ) [ ]( ) ( ) ( ) [ ]( ) ( )
D D

Sim x x Sim x x
+ +

≥R P . 

If ( ) ( ) [ ]
Sim D

x xλ ⊆
P

, then ( ) ( ) ( ) [ ] ( )
Sim D

x y x yλ

−
≤

P
 and ( ) ( ) ( ) [ ] ( )

Sim D
x y x yλ

+
≤

P
 for every y U∈ . 

By Theorem 3.1, this imply ( ) ( ) ( ) [ ]( ) ( )
D

x y Sim x yλ

−−
≤ P  and ( ) ( ) ( ) [ ]( ) ( )

D
x y Sim x yλ

++
≤ P  

for every y U∈ . Letting y x= , then we have ( ) [ ]( ) ( )1 D
Sim x xλ

−

≤ P  and 

( ) [ ]( ) ( )2 D
Sim x xλ

+

≤ P . Therefore, [ ] ( ) [ ]( )( ) ( ) [ ]( )( )1 2,
D D

Sim x x Sim x xλ λ λ= = =R P  which 

implies ( ) ( ) ( ) ( )Sim Sim
POS D POS D=

R P
. Hence, P  contains a relative reduction of R .       

 

Since ⊆P R , we have ( ) ( ) ( ) ( )Sim Sim
x xλ λ⊇

P R
. Theorem 3.3 implies that keeping 

( ) ( ) ( ) ( )Sim Sim
POS D POS D=

R P
 is equivalent to keeping ( ) ( ) [ ]

Sim D
x xλ ⊆

P
 for every x U∈  and 

 

[ ] ( ) [ ]( )( )1 2,
D

Sim x xλ λ λ= = R . 

 

Theorem 3.4. The following two statements are equivalent. 

(1)  ⊆P R  contains a relative reduction of R . 

(2)  For every x U∈  and ( ) ( ) [ ]( )( )1 2,
D

Sim x xλ λ λ= = R . If ( ) ( ) [ ]
Sim D

y xλ ⊄
R

, then 

( ) ( ) 11 ,Sim x y λ
+

− ≥P  or ( ) ( ) 21 ,Sim x y λ
−

− ≥P . 

 

Proof. (1) (2)⇒  If P  contains a relative reduction of R , then by Theorem 3.3, ( ) ( ) [ ]
Sim D

x xλ ⊆
P

 

for [ ] ( ) [ ]( )( )1 2,
D

Sim x xλ λ λ= = R , x U∈ . If ( ) ( ) [ ]
Sim D

y xλ ⊄
R

, then ( ) ( ) [ ]
Sim D

y xλ ⊄
P

. This 

implies ( ) ( ) ( ) ( )Sim Sim
x yλ λ≠

P P
, by Proposition 3.1, ( ) ( ) ( ) ( )Sim Sim

x yλ λ = ∅∩
P P

, that is 

( ) ( ) 11 ,Sim x y λ
+

− ≥P  or ( ) ( ) 21 ,Sim x y λ
−

− ≥P . 

 

(2) (1)⇒  For every x U∈ , [ ] ( ) [ ]( )( )1 2,
D

Sim x xλ λ λ= = R . If ( ) ( ) [ ]
Sim D

y xλ ⊄
R

, then 

( ) ( ) 11 ,Sim x y λ
+

− ≥P  or ( ) ( ) 21 ,Sim x y λ
−

− ≥P . This implies ( ) ( ) ( ) ( )Sim Sim
x yλ λ = ∅∩

P P
 (In fact, 

if ( ) ( ) ( ) ( )Sim Sim
x yλ λ ≠ ∅∩

P P
, there exists z U∈  such that ( ) ( ) ( ) ( ) ( ) ( )

Sim Sim
x z y zλ λ λ= =

P P
. This 
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implies ( ) ( ) 11 ,Sim x z λ
+

− <P , ( ) ( ) 21 ,Sim x z λ
−

− <P , ( ) ( ) 11 ,Sim y z λ
+

− <P and 

( ) ( ) 21 ,Sim y z λ
−

− <P . Hence, ( ) ( ) ( ) ( ) ( ) ( ) 11 , 1 , 1 ,Sim x y Sim x z Sim z y λ
+ + + − ≤ − ∨ − <

 
P P P  

and ( ) ( ) ( ) ( ) ( ) ( ) 2
1 , 1 , 1 ,Sim x y Sim x z Sim z y λ

− − − − ≤ − ∨ − <
 

P P P . It is a contradiction.) Thus, 

we have ( ) ( ) [ ]
Sim D

x xλ ⊆
P

. By Theorem 3.3, P  contains a relative reduction of R .                              

� 

Proposition 3.3. ( ) ( ) [ ]
Sim D

y xλ ⊄
R

 if and only if ( ) [ ]( ) ( ) 1D
Sim x y λ

−

<R  and 

( ) [ ]( ) ( ) 2D
Sim x y λ

+

<R . 

 

Proof. ⇒  If ( ) ( ) [ ]
Sim D

y xλ ⊄
R

, there exists z U∈  such that ( ) ( ) ( )
Sim

y zλ λ=
R

 and [ ] ( ) 0
D

x z = . 

( ) ( ) ( )
Sim

y zλ λ=
R

 implies ( ) ( ) 11 ,Sim y z λ
+

− <R  and ( ) ( ) 21 ,Sim y z λ
−

− <R . Therefore, we 

have ( ) ( )( ) [ ] ( ) 11 ,
D

Sim y z x z λ
+

− ∨ <R  and  which imply 

( ) [ ]( ) ( ) 1D
Sim x y λ

−

<R  and ( ) [ ]( ) ( ) 2D
Sim x y λ

+

<R . 

 

⇐  Suppose ( ) ( ) [ ]
Sim D

y xλ ⊆
R

. By Theorem 3.1, we have ( ) ( ) ( ) [ ]( )
Sim D

y Sim xλ ⊆
R

R . Therefore, 

( ) [ ]( ) ( ) 1D
Sim x y λ

−

≥R  and ( ) [ ]( ) ( ) 2D
Sim x y λ

+

≥R . It is a contradiction. 

 

Theorem 3.3 and 3.4 show that keeping ( ) ( ) [ ]
Sim D

x xλ ⊆
P

 for ( ) ( ) [ ]( )( )1 2,
D

Sim x xλ λ λ= = R  is 

equivalent to keeping ( ) ( ) 1
1 ,Sim x y λ

+
− ≥P  or ( ) ( ) 2

1 ,Sim x y λ
−

− ≥P  for ( ) ( ) [ ]
Sim D

y xλ ⊄
R

, and 

is equivalent to keeping ( ) ( ) ( ) ( )Sim Sim
x yλ λ = ∅∩

P P
 for ( ) ( ) [ ]

Sim D
y xλ ⊄

R
, and is equivalent to 

keeping ( ) ( ) 11 ,Sim x y λ
+

− ≥P  or ( ) ( ) 21 ,Sim x y λ
−

− ≥P  for ( ) [ ]( ) ( ) 1D
Sim x y λ

−

<R  and 

( ) [ ]( ) ( ) 2D
Sim x y λ

+

<R . 

 

The statement of keeping ( ) ( ) 1
1 ,Sim x y λ

+
− ≥P  or ( ) ( ) 2

1 ,Sim x y λ
−

− ≥P  for ( ) ( ) [ ]
Sim D

y xλ ⊄
R

 

(i.e. keeping ( ) ( ) 11 ,Sim x y λ
+

− ≥P  or ( ) ( ) 21 ,Sim x y λ
−

− ≥P  for ( ) [ ]( ) ( ) 1D
Sim x y λ

−

<R  and 

( ) [ ]( ) ( ) 2D
Sim x y λ

+

<R ) can easily be applied to design an algorithm to compute relative 

reductions. 

 

Proposition 3.4. ⊆P R  is a relative reduction of R  if and only if P  is the minimal subset of R  

satisfying the conditions in Theorems 3.3 and 3.4. 

 

( ) ( )( ) [ ] ( ) 2
1 ,

D
Sim y z x z λ

−
− ∨ <R
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With the above discussion, we can develop an algorithm to compute the relative reductions. 

Suppose { }1 , ,
n

U x x= ⋯ . We denote a n n×  matrix ( )ijc  by ( ),
D

M U R , called the discernibility 

matrix of ( ),U D∪R , such that 

 

(1) , , 

     if 
1 1j i

λ λ<  and 
2 2j i

λ λ< ; 

(2)  
ij

c = ∅ , otherwise. 

 

( ),
D

M U R  may not be symmetric and . 
ij

R c∈ ⇔ ( )( ) ( )( )
i i

i j
R R

x x
λ λ

= ∅∩ ⇔ z U∀ ∈ , 

( ) 11 ,
i i

R x z λ+− ≥  or ( ) 21 ,
i i

R x z λ−− ≥  or ( ) 1
1 ,

j i
R x z λ+− ≥  or ( ) 2

1 ,
j i

R x z λ−− ≥ ⇒ z U∀ ∈ , 

( ) ( ) 11 ,i iSim x z λ
+

− ≥R  or ( ) ( ) 21 ,i iSim x z λ
−

− ≥R  or ( ) ( ) 11 ,
j i

Sim x z λ
+

− ≥R  or 

( ) ( ) 21 ,
j i

Sim x z λ
−

− ≥R ⇔ ( )( )
( )

( )( )
( )i i

i j
Sim Sim

x x
λ λ

= ∅∩
R R

. Suppose ⊆P R  contains a relative 

reduction of R , then ( )( )
( )

( )( )
( )i i

i j
Sim Sim

x x
λ λ

= ∅∩
P P

 for  
1 1j i

λ λ≤  and 
2 2j i

λ λ≤ . This implies 

that there exists R ∈P  such that ( )( ) ( )( )
i i

i j
R R

x x
λ λ

= ∅∩ . This is equivalent to P  containing an 

element in 
ij

c . Thus 
ij

c  is the collection of attributes which can keep 

( )( )
( )

( )( )
( )i i

i j
Sim Sim

x x
λ λ

= ∅∩
R R

 for 
1 1j iλ λ<  and 

2 2j iλ λ< . 

 

A discernibility function ( ),
D

f U R  for ( ),U D∪R  is a Boolean function of m  Boolean variables 

m  
1 2, , ,

m
R R R⋯  corresponding to the interval-valued fuzzy attributes 

1 2
, , ,

m
R R R⋯ , respectively, 

and is defined as follows: 

, 

 

where ( )ijc∨  is the disjunction of all variables R  such that 
ij

R c∈ . In the sequel, 
i

R  is simply 

denoted without ambiguity as iR . 

 

We have the following theorem for the relative core. 

 

Theorem 3.5. . 

 

Proof. ( )D
R Core∈ R ⇔ ( ) ( ) { }( ) ( )Sim Sim R

POS D POS D
−

≠
R R

⇔ There exists 
ix U∈  such that 

( )( )
( )

[ ]
i

i i D
Sim

x x
λ

⊄
P

 for , and there also exists 
j

x U∈  such that 

( )( )
( )

[ ]
i

j i D
Sim

x x
λ

⊄
R

 and ( )( )
{ }( )

( )( )
{ }( )i i

i j
Sim R Sim R

x x
λ λ

=
R- R-

. ⇔ { }( ) ( ) 11 ,
i j i

Sim R x x λ
+

− <R - , 

( ) ( ){ }1 2
:1 , 1 ,

ij i j i i j i
c R R x x or R x xλ λ+ −= − ≥ − ≥ [ ] ( ) [ ]( )( )1 2

,
i i i i iD

Sim x xλ λ λ= = R

( ) [ ]( )( )1 2
,

j j j i jD
Sim x xλ λ λ = =  R

i ic = ∅

( )( ) ( ){ }1 2
, , , , :

D m ij ij
f U R R R c c= ∧ ∨ ≠ ∅⋯R

( ) { }{ }: ,1 ,
D ij

Core R c R i j n= ∈ = ≤ ≤R R

[ ] ( ) [ ]( ) ( )1 2
,

i i i i iD
Sim x xλ λ λ= = R
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{ }( ) ( ) 21 ,
i j i

Sim R x x λ
−

− <R - , and ( )( ) ( )( )
i i

i j
R R

x x
λ λ

≠ . ⇔ ( ) ( ) 11 ,
i j i

R x x λ
+

′− <  and 

( ) ( ) 21 ,
i j i

R x x λ
−

′− <  for any R R′ ≠ , and ( )( ) ( )( )
i i

i j
R R

x x
λ λ

≠ . ⇔ ( ) ( ) 11 ,
i j i

R x x λ
+

′− <  and 

( ) ( ) 21 ,
i j i

R x x λ
−

′− <  for any R R′ ≠ , and ( ) 11 ,i j iR x x λ+− ≥  or ( ) 21 ,i j iR x x λ−− ≥ . ⇔ { }ij
c R= .                                                             

 

The statement { }ij
c R=  implies that  is the unique attribute to maintain 

 

  if 
1 1j iλ λ<  and 

2 2j iλ λ< . 

 

Theorem 3.6. If ⊆P R , then P  contains a relative reduction of R  if and only if 
ij

c ≠ ∅∩P for 

every 
ij

c ≠ ∅ . 

 

Proof. ⇒  Suppose that 
0 0,i j n∃ ≤ , 

0 0i j
c ≠ ∅ , but 

0 0i j
c = ∅∩P . Namely, R∀ ∈P , 

0 0i j
R c∉  

which implies ( )
0 0 0 11 ,
i j i

R x x λ+− <  and ( )
0 0 0 21 ,
i j i

R x x λ−− <  for 
0 01 1j i

λ λ≤  and 
0 02 2j i

λ λ≤ . 

Hence, ( ) ( )
0 0 0 11 ,
i j i

Sim x x λ
+

− <P  and ( ) ( )
0 0 0 21 ,
i j i

Sim x x λ
−

− <P  for 
0 01 1j i

λ λ≤  and 
0 02 2j i

λ λ≤ . 

This is a contradiction to the condition that P  contains a relative reduction of R . 

 

⇐  
ij

R c∀ ∈ ∩P . According to Definition of 
ij

c , we have ( ) 1
1 ,

i j i
R x x λ+− ≥  or 

( ) 21 ,i j iR x x λ−− ≥  for 
1 1j i

λ λ≤  and 
2 2j i

λ λ≤ . Therefore, ( ) ( ) ( ) 11 , 1 ,
i j i j i

Sim x x R x x λ
+ +− ≥ − ≥P  

or ( ) ( ) ( ) 21 , 1 ,
i j i j i

Sim x x R x x λ
− −− ≥ − ≥P  for 

1 1j i
λ λ≤  and 

2 2j i
λ λ≤ . By Theorem 3.4, P  

contains a relative reduction of R .                                                                             

 

Corollary 3.1. Suppose ⊆P R , then P  is a relative reduction of R  if and only if P  is the 

minimal set satisfying 
ij

c ≠ ∅∩P  for every 
ij

c ≠ ∅ . 

 

Let ( ),
D

g U R  be the reduced disjunctive form of ( ),
D

f U R  obtained from ( ),
D

f U R  by 

applying the multiplication and absorption laws, then there exist l  and 
k

⊆R R  for 1,2, ,k l= ⋯  

such that ( ) ( ) ( ) ( )1 2,
D l

g U = ∧ ∨ ∧ ∨ ∨ ∧⋯R R R R  where each element in 
kR  appears only one 

time. We have the following theorem. 

 

Theorem 3.7. . 

 

Proof. For each 1,2, ,k l= ⋯ , we have 
k ijc∧ ≤ ∨R . By the disjunction and conjunction laws, 

k ij
c ≠ ∅∩R  for any 

ij
c ≠ ∅ . Since ( ) ( ) ( ) ( )1 2,

D l
g U = ∧ ∨ ∧ ∨ ∨ ∧⋯R R R R , it follows that for 

arbitrary 
k
R  if we reduce an element R  from 

k
R , let { }k k

R′ = −R R , then 

( ) ( ) ( ) ( )
1

1 1
,

k l

D r k r
r r k

g U
−

= = +
′≠ ∨ ∧ ∨ ∧ ∨ ∨ ∧R R R R  and ( ) ( ) ( ) ( )

1

1 1
,

k l

D r k r
r r k

g U
−

= = +
′< ∨ ∧ ∨ ∧ ∨ ∨ ∧R R R R . If 

R

( )( )
( )

( )( )
( )i i

i j
Sim Sim

x x
λ λ

= ∅∩
R R

( ) { }1
, ,

D l
Red = ⋯R R R
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we still have 
k ij

c′ ≠ ∅∩R  for any 
ij

c ≠ ∅ , then 
k ij

c′∧ ≤ ∨R  for any 
ij

c ≠ ∅ . This implies that 

( ) ( ) ( ) ( )
1

1 1
,

k l

D r k r
r r k

g U
−

= = +
′≥ ∨ ∧ ∨ ∧ ∨ ∨ ∧R R R R  and ( ) ( ) ( ) ( )

1

1 1
,

k l

D r k r
r r k

g U
−

= = +
′= ∨ ∧ ∨ ∧ ∨ ∨ ∧R R R R , 

which is a contradiction. Hence, there exists ( ) ( ) ( ) ( )
1

1 1
,

k l

D r k r
r r k

g U
−

= = +
′≠ ∨ ∧ ∨ ∧ ∨ ∨ ∧R R R R  and 

0 0i j
c ≠ ∅  such that 

0 0k i j
c′ = ∅∩R , which implies that 

kR  is a relative reduction of R . 

 

For any ( )D
Red∈X R , we have 

ij
c ≠ ∅∩X  for any 

ij
c ≠ ∅ . Thus 

( ) ( ) ( ) ( ) ( ),D ijf U c∧ ∧ = ∧ ∨ ∧ ∧ = ∧R X X X . This implies ( ) ( ), ,
D D

f U g U∧ ≤ =X R R . If 

k − ≠ ∅R X  for each k , we can find 
k kR ∈ −R X  for each k . By rewriting 

( )
1

,
l

D k
k

g U R
=

 
= ∨ ∧ ∅ 
 

R , we have 
1

l

k
k

R
=

∧ ≤ ∨X . So there must be 
0k

R  such that 
0k

R∧ ≤X , this 

implies 
0k

R ∈X . This is a contradiction. So 
0k

∈R X  for some 
0k . Since both X  and 

0k
R  are 

relative reductions, we have 
0k

=X R . Hence ( ) { }1 , ,
D l

Red = ⋯R R R .               

 

Remark 3.1. If the interval-valued fuzzy similarity relation is a fuzzy similarity relation, then the 

lower approximation degenerates into the fuzzy one [43], and our method in this section coincides 

with the fuzzy one found in [23]. If the interval-valued fuzzy similarity relation is a crisp 

equivalence relation, then the lower approximation degenerates into the crisp one [1], and our 
method in this section coincides with the crisp one found in [14]. Thus, our idea and method are 

really the generalization of the fuzzy one found in [23] and the crisp one found in [14] for 

interval-valued fuzzy case. 

 

It should be noted that if ( )ij D
c Core ≠ ∅∩ R , then { } ( ) { }ijR c R∧ ∨ =  for ( )ij D

R c Core∈ ∩ R . 

When computing ( ),
D

g U R  by ( ),
D

f U R  we can only consider elements in ( )D
Core R  and 

ij
c  

satisfying ( )ij D
c Core = ∅∩ R  so that the computational load may be reduced. We can design an 

algorithm to compute reductions for interval-valued fuzzy decision systems. 

 

Suppose { }1 2, , ,
n

U x x x= ⋯ , { }1 2, , ,
s

U D D D D= ⋯ . 

 

Step 1: Compute ( )Sim R . 

Step 2: Compute ( )( )k
Sim DR  for every 

kD U D∈ . 

Step 3: Compute 
ij

c : if 
1 1j i

λ λ<  and 
2 2j i

λ λ< , then 

( ) ( ){ }1 2:1 , 1 ,
ij i j i i j i

c R R x x or R x xλ λ+ −= − ≥ − ≥ , otherwise 
ij

c = ∅ . 

Step 4: Compute core as collection of those 
ij

c  with single element. 

Step 5: Delete those 
ij

c = ∅  and 
ij

c  with nonempty overlap with the core. 

Step 6: Define ( ) ( ){ },
D ij

f U c= ∧ ∨R  with 
ij

c  left after Step 5. 
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Step 7: Compute ( ) ( ) ( ) ( )1 2
,

D l
g U = ∧ ∨ ∧ ∨ ∨ ∧⋯R R R R  by ( ) ( ){ },D ijf U c= ∧ ∨R

. 

Step 8: Output all reductions ( ) { }1
, ,

D l
Red = ⋯R R R . 

 

4 An Illustrated Example 

 
The following example of data set (adopted from the [44,45] with some modifications) is 

employed to illustrate our idea in Section 3. 

 

Example 4.1. The car data set contains the information of ten new cars. Let { }1 2 10, , ,U x x x= ⋯  be 

the cars, each of which is described by six attributes: (1) 
1C : fuel economy; (2) 

2C : aerod degree; 

(3) 
3C : price; (4) 

4C : comfort; (5) 
5C : design; and (6) 

6C : safety. The characteristics of the ten 

new cars under the six attributes are represented by the interval-valued fuzzy sets, as shown in 

Table 1. 

 

Every IVF attribute 
kC  can define an IVF similarity relation 

kR  as 

 

( )
( ) ( ){ } ( ) ( )

( ) ( )

min , ,
,

1,

k i k j k i k j

k i j

k i k j

C x C x C x C x
R x x

C x C x

 ≠
= 

=  
 

Table 1. The car data set 

 

U  1C
 2C

 3C
 4C

 5C
 6C

 

1x  
[0.3,0.4] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.6,0.7] [0.2,0.7] 

2x
 

[0.6,0.8] [0.6,0.7] [0.2,0.3] [0.5,0.6] [0.7,0.8] [0.3,0.9] 

3x
 

[0.5,0.8] [0.7,0.8] [0.5,0.5] [0.2,0.3] [0.4,0.6] [0.5,0.8] 

4x
 

[0.2,0.3] [0.5,0.7] [0.6,0.7] [0.4,0.5] [0.6,0.9] [0.4, 0.7] 

5x
 

[0.6,0.8] [0.3,0.5] [0.4,0.6] [0.6,0.8] [0.5,0.6] [0.6,0.6] 

6x
 

[0.4,0.6] [0.3,0.5] [0.3,0.6] [0.7,0.8] [0.4,0.5] [0.2,0.7] 

7x
 

[0.6,0.7] [0.4,0.5] [0.7,0.8] [0.3,0.6] [0.3,0.7] [0.1,0.6] 

8x
 

[0.7,0.7] [0.3,0.9] [0.1,0.2] [0.4,0.5] [0.4,0.5] [0.8,0.9] 

9x
 

[0.4,0.5] [1,1] [0.4,0.5] [0.6,0.7] [0.2,0.7] [0.1,0.8] 

10x
 

[0.7,0.8] [0.5,0.9] [0.3,0.4] [0.5,0.9] [0.5,0.7] [0.4,0.6] 

 

( )Sim R  can be computed as 
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( )( )

1 [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.2,0.4] [0.3,0.4] [0.1,0.4] [0.1,0.2] [0.1,0.4] [0.2,0.4]

[0.2,0.3] 1 [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.1,0.3] [0.1,0.2] [0.1,0.3] [0.2,0.3]

[0.2,0.3] [0.2,0.3] 1 [0.2,0.

,i jSim x x =R

3] [0.2,0.3] [0.2,0.3] [0.1,0.3] [0.1,0.2] [0.1,0.3] [0.2,0.3]

[0.2,0.3] [0.2,0.3] [0.2,0.3] 1 [0.2,0.3] [0.2,0.3] [0.1,0.3] [0.1,0.2] [0.1,0.3] [0.2,0.3]

[0.2,0.4] [0.2,0.3] [0.2,0.3] [0.2,0.3] 1 [0.2,0.5] [0.1,0.5] [0.1,0.2] [0.1,0.5] [0.3,0.4]

[0.3,0.4] [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.2,0.5] 1 [0.1,0.5] [0.1,0.2] [0.1,0.5] [0.2,0.4]

[0.1,0.4] [0.1,0.3] [0.1,0.3] [0.1,0.3] [0.1,0.5] [0.1,0.5] 1 [0.1,0.2] [0.1,0.5] [0.1,0.4]

[0.1,0.2] [0.1,0.2] [0.1,0.2] [0.1,0.2] [0.1,0.2] [0.1,0.2] [0.1,0.2] 1 [0.1,0.2] [0.1,0.2]

[0.1,0.4] [0.1,0.3] [0.1,0.3] [0.1,0.3] [0.1,0.5] [0.1,0.5] [0.1,0.5] [0.1,0.2] 1 [0.1,0.4]

[0.2,0.4] [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.3,0.4] [0.2,0.5] [0.1,0.4] [0.1,0.2] [0.1,0.4] 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Suppose a decision partition is { }1 2 4 7 9, , , ,A x x x x x= , { }3 5 6 8 10, , , ,B x x x x x=  then 

 

 

 

 

 

 

 

 

 

 
 

and the discernibility matrix ( ),
D

M U R  of ( )ijc  is as follows: 

{1, 4,6} {1, 2,6} {1, 2,3} {1, 2,3,6} {1,3,6}

{3,6} {3, 4} {3} {3,6} {3} {3}

{4,6} {3,4} {1, 4} {4,6} {4,6} {4,5,6}

{1,6} {1, 4} {1} {1,6} {1,3} {1}

{1, 2,6} {2,3} {1, 2, 4} {2,6} {1, 2,3,5,6}

{1,2,3,5} {2,3,5,6} {1, 2,

∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅

∅ 3, 4,5,6} {2,3,4,5,6} {1, 2,3,5,6}

{2,3, 4,6} {2,6} {2,5,6} {2,3, 4,5,6} {2,3,6}

{3} {3} {3} {3} {3} {3} {3,6} {3,6} {3}

{1,3, 4,6} {1, 2,3,6} {1, 2,3,5,6} {1,3, 4,5,6} {1,3,6}

{1,3,6} {3} {1,3} {3,6} {3,6} {3,5,6}



∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅

∅

∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅


 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

We can get that ( ) { }1 3,
D

Core C C=R  and  

 

( ) { } { } { }{ }1 2 3 4 1 2 3 6 1 3 6, , , , , , , , , ,DRed C C C C C C C C C C C=R . 

 

Based on the above analysis, we can see that the proposed Algorithm has a less computational 

complexity. 

 

 

( )( )( )

1

2

4

7

9

[0.6,0.7],

[0.7,0.8],

[0.7,0.8],

[0.5,0.9],

[0.5,0.9],

[0,0],

x x

x x

x x
Sim A x

x x

x x

=


=
 =

= 
=

 =



R

other

( )( )( )

3

5

6

8

10

[0.7,0.8],

[0.5,0.8],

[0.5,0.7],

[0.8,0.9],

[0.6,0.8],

[0,0],

x x

x x

x x
Sim B x

x x

x x

=


=
 =

= 
=

 =



R

other
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5 Conclusion 

 
The aim of this paper is to focus on attributes reduction based on interval-valued fuzzy rough sets. 

After reviewing attributes reduction with traditional rough sets, some equivalent conditions to 

describe the relative reduction based on interval-valued fuzzy rough sets are proposed, and the 

structure of reduction is completely examined. An algorithm based on discernibility matrix to 

compute all the attributes reductions has been developed. At last the concepts of attributes 

reduction have been demonstrated by an example. This work may be viewed as the extension of 

[14] and [23] in the interval-valued fuzzy environment. In the future, our work will focus on the 

two facets. On one hand, we will study computational complexity of the proposed algorithm in 

this paper. On the other hand, we will concentrate our discussion on some fast algorithms to 

compute attributes reduction. 
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