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ABSTRACT 
 

The biological equilibrium of iron, a potent, multifunctional micronutrient is a decisive factor in the 
holistic health of the mother and child. Iron dysequilibrium impairs organ function, effects growth 
and development and predisposes to a spectrum of disease states. This article revisits the 
homeostasis of body iron in early life as a sequential continuum from prenatal to early post- natal 
life ,then reviews, compares and attempts to integrate intra and early extra uterine events related 
to iron metabolism. The “adaptive evolutionary” mechanisms involved in iron homeostasis in early 
life such as the transfer of iron from the mother to the feto-placenta unit and from the lactating 
mammary glands into breastmilk are revisited as both organs support life during dynamic 
developmental stages of growth and differentiation. The checks and balances of iron metabolism in 
pregnancy also endow some iron to the feto-placental unit, by actively transporting iron from the 
mother to the developing fetus. In early postnatal life the mechanisms involved in iron absorption 
are not yet fully mature, and other sources of iron such as transplacentally transferred iron and the 
iron stored from hemolysis of the rapidly decreasing red blood cell (RBC) mass contribute to early 
iron equilibrium. Additionally, although breastmilk is low in iron, the concept of active iron 
bioavailability in the breastfed infant provides utilizable iron. The lactating mammary glands may 
adopt unique features of iron metabolism adapted to the individual infant with the iron content in 
breastmilk largely, but not entirely, independent of maternal iron status. Early physiological iron 
equilibrium reflects essential homeostatic complexity, highlighting that exogenous iron, when 
required, must also be weighed for its benefits against its risks, as evident in the cautious 
homeostasis in our biological systems. 

Review Article 
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1. INTRODUCTION  
 
Iron is an essential micronutrient in the body with 
crucial roles in the transport of oxygen growth, 
cellular respiration, energy production and other 
notable iron dependent processes [1]. Iron 
deficiency anemia is a public health menace of 
significant magnitude throughout the world and 
the main nutritional anemia amongst women of 
reproductive age and children [2] While the 
prevalence of anemia  among children aged 6–
59 months was 42.6% globally , Africa and 
Southeast Asia were most critically affected [3]. 
Further highlighting health impact is that iron 
deficiency contributes to a whopping 86–93% of 
childhood anemias in some parts of the world [4]. 
   
Reviewing iron metabolism from in utero events 
must embrace feto- maternal transfer and the 
dynamics of lactational iron in the first six months 
of natural feeding. Revisiting early iron 
metabolism permits better public health 
appreciation of integrated events; those that 
contribute to anemia in early life such as 
maternal factors as well as infant feeding mode 
and duration [5] . 
   
The importance of iron in the growing child for 
physical and cognitive development cannot be 
overstated [6,7]. Synapses, neurotransmitters 
and myelination in the developing brain depend 
on iron containing proteins that impact brain- 
energy responses and neurocognition [8]. 
Pregnancy heightens risk for iron deficiency, as 
iron requirements could easily exceed intake [9], 
with impaired absorptive capacity or excessive 
iron losses compounding this. In pregnancy an 
index of suspicion of asymptomatic iron 
deficiency is necessary as subtle symptoms such 
as inadequate weight gain may signal its 
deficiency [9] .The tight-knit integration of 
maternal and child health is most evident in iron 
metabolism, as risk factors such as preterm birth 
or low birth weight which are important 
morbidities, are linked to maternal anemia [9]. 
 
Normally, daily iron absorption is much less than 
its requirements.  RBCs contain iron in 
hemoglobin and their lysis provides the main iron 
pool for early homeostasis. The recycling of iron 
released by lysis of senescent RBCs provides 
iron that is taken up by splenic macrophages 
which then deliver iron into circulation [10] 
Modulation of intestinal iron absorption,  through 
maturation and  development of iron homeostatic 

processes, continue to maintain iron balances 
[10,11]. 
 
In the human body, iron exists convertably in 
ferrous and ferric oxidation states, and serves 
electrons in the electron transport chain reactions 
for metabolic energy [10]. Iron is largely bound to 
protein because free iron is perilous and is vied 
by disease- causing microbes. Specific factors in 
the neonate can further adversely influence iron 
homeostasis and predispose the infant to 
bacterial infections [6] .While iron deficiency is of 
great health impact, excess iron also causes 
adverse effects through pro-oxidative reactions, 
nutrient interactions [12] or the negative impact it 
can have on intestinal microbial pathogens that 
require iron for survival and proliferation, thus 
altering useful commensal microflora [10-13]. For 
instance, iron fortified foods of low bioavailability, 
when not completely absorbed generate reactive 
oxygen species whereas foods rich in 
antioxidants prevent this [12-13]. Free iron can 
impair physical growth and cognition; it also 
increases incidence of diarrheal illnesses and 
interacts with other trace elements such as 
copper and zinc with negative impact on health 
[13]. 
 

2. METHODOLOGY 
  
Topics reviewed were prenatal, birth and 
postnatal factors that could influence iron 
metabolism and search words included headings 
related to all subtopics.  The search word 
common to all subtopics were iron deficiency and 
iron deficiency anemia. Data from prenatal and 
relevant post-natal events was analysed, 
compared and integrated.  
 
2.1 Publications Characteristics 
 
Original articles, systematic reviews, meta-
analyses, narrative reviews, experimental 
studies, prospective studies, retrospective 
studies and case reports were included.  
Excluded were letters to editor and publications 
in foreign language and unpublished papers. A 
total of 79 articles including a chapter from a 
standard paediatric textbook were chosen from 
the materials perused. 
 

2.2 Topic Characteristics  
 
Inclusion criteria on topics reviewed were 
prenatal events that influence iron metabolism in 
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pregnancy, in the fetus and placenta, factors that 
influence iron at birth and postnatal factors 
related to iron metabolism. Perusal also included 
iron, breastmilk and the lactating mammary 
gland. 
 

One book chapter reviewed prenatal, natal and 
post-natal causes of iron deficiency and iron 
deficiency anemia. 
 

Excluded were articles on iron deficiency due to 
major inherited or acquired maternal medical or 
surgical illnesses except for those relevant in the 
initial discussion overview, fetal chromosomal 
anomalies and inborn errors involving iron 
metabolism or iron storage. 
  
3. DISCUSSION  
 

3.1 Factors Impacting Iron Metabolism in 
Early Life 

 

An overview of factors impacting iron metabolism 
at critical stages of development is essential 
here. Maternal health and social habits 
potentially affect fetal iron stores [14-
20].Normally, relative intrauterine hypoxia 
stimulates fetal erythropoiesis [17], and maternal 
iron stores are transferred to the fetus in late 
pregnancy ; this results in a high RBC mass and 
high hemoglobin levels at birth [15-17]. Factors 
that affect both maternal and fetal health include 
maternal body mass index, maternal diabetes 
and birth weight z score [18].Cumulative risk 
factors may worsen neonatal iron status [18]. 
  
Infants of diabetic mothers (IDM) may develop 
increased erythropoiesis with a limited iron 
supply leading to iron deficiency [18,19]. 
Maternal smoking causes low concentrations of 
iron markers in umbilical cord blood , with a 
subclinical fetal iron deficiency [20] Adverse 
perinatal outcome of maternal iron deficiency 
include intrauterine growth restriction , 
prematurity, and low birth weight [9] ;  small-for-
gestational-age neonates (weight below the 10th 
percentile for gestation) ,very-low-birth weight 
(weight below 1500 grams at birth) and preterm 
neonates

 
[15-21]. In addition, a study also found 

that neonates who were large for gestational age 
(weight above the 90

th
 percentile for gestation) 

born to women with comorbid obesity and 
diabetes had the worst iron profile, and this 
stresses the importance of identifying risk factors 
[18]. 
  
Transplacental haemorrhage which occurs in 5-
15% of pregnancies, when severe, may lead to 

clinically detectable anemia at birth [19]. 
Congenital hypoplastic anemias, congenital 
infections and congenital leukemias cause 
anemias in newborn infants. Chronic intrauterine 
blood loss, alpha thallasemia syndromes, 
immune and nonimmune hemolytic anemias are 
other predisposing factors. Blood loss due to 
frequent blood sampling , feto- placental 
hemorrhage , placental hemorrhage and 
umbilical cord haemorrhage are causes of 
anemia in the newborn [19] .Infants born through 
Cesarian section may have a lower hematocrit , 
while a two minute delay in clamping of the 
umbilical cord, can increase body iron stores with 
effects lasting upto 6 months of age [22].  

 
Postnatally, the mode of feeding influences 
neonatal and infant iron profiles as 
breastfeeding, especially if for more than 6 
months , without commencing iron rich foods can 
cause iron deficiency [23].  Male gender, 
independent of rapid growth or longer 
breastfeeding duration, also predisposes to iron 
deficiency [24]. At around 8-12 weeks in term 
infants and about 6 weeks in preterm infants, 
there is a physiological decline in the amount of 
iron in the body with haemoglobin levels at about 
11g/dl in term 7-10g/dl in preterm infants [19]. 
The hemoglobin nadir is lower and occurs earlier 
in more premature infants [25]. A study reports 
that biochemical iron deficiency where serum 
iron and ferritin are low without clinical evidence 
occured in 17% of screened neonates at birth 
and who were at risk of iron deficiency [16]. A 
significant percentage of between 25% upto 85% 
of preterm infants could manifest evidence 
suggestive of iron deficiency in infancy [21,25].  
 
Lower birth weight and serum ferritin 
concentrations, a marker of body iron stores, are 
independently associated with iron depletion at 6 
weeks of age [26].As the preterm infant has a 
high growth velocity, there is greater depletion of 
tissue iron stores in them and this is most 
pronounced in the very premature infant linked to 
a rapid catch up growth [21,25]. 
  
A spectrum of social and psychological influe- 
nces have the potential to cause iron deficiency. 
Women’s education levels, household poverty, 
food insecurity due to insufficient resources for 
supplements or iron fortified foods and lack of 
knowledge about iron deficiency are important 
factors [27]. Social factors associated with 
common mental disorders in the antenatal clinic 
predispose to iron deficiency in mother and child 



 
 
 
 

Kutty; JAMMR, 33(7): 1-11, 2021; Article no.JAMMR.66570 
 
 

 
4 
 

at every stage impacting prenatal, birth and post-
natal outcome [27]. 
 
3.1.1 Changes in pregnancy 
 
The physiological changes that occur in 
pregnancy are considered in context of iron 
homeostatic processes in the mother. Pregnancy 
increases basal oxygen consumption with 
changes in energy utilization by different organs 
including the feto-placental unit. The highly 
vascular placenta with abundant mitochondria 
can consume upto about 1% of the basal 
metabolic rate of the pregnant woman[28,29]. 
Hemodynamic changes in pregnancy alter iron 
homeostasis through hormonal responses ,iron 
absorptive processes and iron distribution [30-
39].The iron requirements in mid and late 
pregnancy are high and physiological demand for 
iron is three times greater during pregnancy, 
increasing in the second trimester with maximum 
iron requirement in the third trimester [33] . The 
plasma volume gradually increases in the first 
trimester and upto about 30 to 34 weeks [30], 
with erythropoeitin increasing the red cell mass, 
early in pregnancy until delivery.  In tandem with 
changes that occur in pregnancy, anemia by 
laboratory testing is reflected in a hemoglobin 
concentration of less than 110 g/l in the first 
trimester and 105 g/l in the second and third 
trimesters and less than 100 g/l in the 
postpartum period [34].  
 
Body iron exists in different physiological forms, 
such as heme iron which is transported by heme 
carrier protein 1 (HCP1), an intestinal iron 
transporter, while non-heme iron in the ferric 
form is initially reduced to ferrous iron. This is 
done by enzymes such as duodenal cytochrome 
b (DCYTB) [35,36]. Iron is then transported into 
the enterocyte of the gastrointestinal tract by 
divalent metal transporter 1 (DMT1) [36]. 
Intracellular ferrous iron is transferred across the 
enterocyte by ferroportin (FPN), and is then 
oxidized to ferric iron by hephaestin (HEPH), a 
transmembrane multi-copper ferroxidase (MCF) 
with iron efflux from cells through the iron 
transporter, ferroportin 1 (FPN1) [35-38]. 
  
Iron absorbed from the gastrointestinal tract and 
iron released from the lysis of senescent RBCs 
and its recycling by splenic macrophages, is 
regulated by hepcidin [37], a key iron regulator 
hormone which is suppressed in pregnancy [32]. 
Hepcidin binds and degrades its receptor, 
ferroportin on the enterocytes and macrophages 
to exert its important action. The synthesis of 

hepcidin is controlled by factors such as iron 
levels, infections and inflammation, anemia and 
erythropoeitic activity [37], and the lower levels of 
maternal hepcidin increases supply of iron into 
the circulation as it enhances absorption of 
dietary iron and increases release of iron from 
stores [32]. 
   
Storage iron is as ferritin, while ferrous iron is 
oxidized by ceruloplasmin to ferric iron and 
incorporated into transferrin found in plasma [38].  
Serum ferritin is a marker of body iron stores, but 
is influenced by inflammatory cytokines and other 
factors [33]. In pregnancy, serum ferritin 
concentrations gradually decrease in the third 
trimester due to the hemodiluton and efficient 
iron mobilization from stores as hepcidin 
concentrations decrease during pregnancy 
[32,33]. Iron stores in pregnancy are assessed 
by serum ferritin and iron deficiency is reflected 
by a serum ferritin level of less than 30 ng/mL 
[33].Due to these physiological changes, all 
pregnant women must receive adequate advice 
on iron rich diet, as iron deficiency is the most 
common cause of anemia in pregnancy and 
hemoglobin concentrations should be routinely 
measured [34]. 
    
3.1.2 The fetus and placental iron 
  
The mother endows a fraction of her iron to the 
developing fetus through the placenta which is 
actively involved in this transfer[32], hence 
maternal iron transport to the placenta, is 
possibly modulated by fetal signals, as maternal 
liver stores of iron during pregnancy decrease 
significantly [39] and this impacts the fetus, the 
newborn and the infant [39,40]. As pregnancy 
progresses, increased placental blood flow, 
thinning of the syncytiotrophoblast and increased 
placental transferrin receptors are mechanisms 
that enhance the transfer of iron to the placenta 
and the fetus[41,42]. The placenta is rich in 
mitochondria and this potentially can produce 
reactive oxygen species (ROS), which increases 
the release of free iron. Hence the placenta plays 
an important dual function of mediating iron 
exchange [29] between the mother and the fetus 
as well as possessing defense mechanisms 
against free radical damage. [29,43] 
 
The placenta retains some iron for its own 
function, and transports much more of it to the 
fetus in a unidirectional manner from mother to 
fetus only.  Most of the iron transferred to the 
fetus, is bound to transferrin which is produced  
in increasing amounts during pregnancy, 
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especially during the third trimester, coinciding 
with the lowest maternal hepcidin expression 
[32,39]. However, maternal iron status does not 
seem to significantly impact the iron in her 
breastmilk [44]. 
  
The fetus produces erythropoietin the main 
hormone that stimulates erythropoiesis, in the 
liver, a function which then occurs in the kidneys 
[45].During the third trimester of gestation, fetal 
red cell production is taken over from hepatic to 
marrow erythropoiesis [45,46]. However , feto- 
maternal conditions can impact this ; maternal 
anemia, fetal growth restriction and intrauterine 
hypoxia can influence fetal erythropoietin 
production [30].The fetus is able to modulate its 
own iron levels but  with limited capacity as 
below a critical iron level, the maternal liver 
responds to the iron deficiency to attempt to 
restore its own concentrations of iron [39]. 
  
Most of the fetal iron is obtained in the last 
trimester of pregnancy, explaining why infants 
born before this time are iron deficient. Fetal 
capillaries are in close contact to the 
syncytiotrophoblast, separated only by fetal 
endothelium [29]. The placenta uptakes 
transferrin bound iron and non-transferrin bound 
iron. Placental uptake of transferrin bound iron is 
by the presence of the transferrin receptor 1. 
Ferrous iron, through the divalent metal 
transporter 1 (DMT1), or an alternate method, 
enters into the cytoplasm of the 
syncytiotrophopblast [31]. Iron that is not bound 
to transferrin from the maternal circulation may 
be transported by zinc and iron related protein 8 
(ZIP8) or and zinc and iron related protein 14 
(ZIP14), expressed on the apical side of the 
syncytiotrophoblast [31]. 
  
Ferroportin transports iron out of the placenta 
while ceruloplasmin, zyklopen and hephaestin  
endow the fetal circulation with iron by trans -
endothelial transfer [47]. Hepcidin may also be 
important in feto- placental iron regulation , as 
when increased fetal iron transport occurs in the 
last trimester of pregnancy, the fetus synthesizes 
hepcidin, influencing placental iron equilibrium 
[47]. 
 
3.2 Iron and the Neonate 
 
Iron transferred to the fetus and the various 
events that determine iron levels at birth are so 
important because these predict physical and 
neurological development for up to 2 years of life 
[40] .A study identified predictors of serum ferritin 

and serum soluble transferrin receptor in healthy 
newborns and found that both these parameters 
correlated with important feto- maternal indices. 
For instance, cord serum ferritin was related to 
the cessation of smoking and the use of iron 
supplements during pregnancy (partial r=-0.12 
and 0.16; P<0.05 for both) while cord serum 
soluble transferrin receptor was linked to body 
mass index (BMI) in the first trimester , 
gestational age, and male gender(partial r = 
0.30, 0.24, and 0.19, respectively; P < 0.01 for 
all) [40]. 
  
A significant fall in hemoglobin during the first 6 
weeks of life due to RBC hemolysis [30,32], 
inkeeping with the oxygen rich extrauterine 
environment, and a fall in plasma erythropoietin  
levels occur [48].In the term infant, hepcidin , the 
key iron regulator, increases significantly in early 
life , leading to a short period of hypoferremia , 
perhaps as a defense against sepsis by iron 
utilising microbes, but this is followed by 
increases in iron and transferrin saturation by the 
end of the first month [47].There is a ‘physiologic  
anemia’ , recognised as normal,  at around 3 
months of age , in the term infant, when the full-
term healthy infant is observed to have a body 
iron content proportionate to weight 
[49].Whereas,  premature infants experience a 
lower nadir of hematocrit with a normocytic, 
normochromic anemia coincident with low 
reticulocyte counts and Epo levels [50]. 
 
3.2.1 Iron and lactation 
 
3.2.1.1 Milk iron 
 
An average of about 1200mg of iron is required 
from conception to delivery for fetal development 
and to make up for delivery blood losses [51]. 
Some iron is also lost as lactoferrin in milk [52], 
with human breastmilk having low iron 
concentrations compared to maternal serum 
where colostral iron concentrations are at about 
0.8 μg/mL which then declines in mature milk to 
about 0.2–0.4 μg/mL [10, 53]. Unlike the iron 
transferred to the unborn fetus, iron 
concentrations in breast milk do not seem to be 
significantly dependent on maternal iron status or 
iron intake. A study shows that iron concentration 
at 9 months postpartum was not related to 
maternal mineral status which included iron [54] 
suggesting an active transport mechanism in the 
mammary gland [44,55] However, others indicate 
that the quantity of iron during lactation may be 
influenced by maternal iron status during 
pregnancy [56]. 
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Breastmilk contains  abundant cell types [57] and 
milk epithelial cells may be an important source 
of milk iron [53,58]. Comparable to placental 
transport of iron, gene profiles suggest iron 
transport pathways in the lactating human 
epithelial cell [58], such as dimetal transporter 1 
(DMT1), and ferropoeitin 1 (FPN1) [58,59],which, 
like concentrations of iron itself,  decrease during 
lactation. Transport mechanisms may contribute 
to dynamic iron equilibrium in breastmilk from 
colostrum to mature milk, with peak iron levels in 
transitional milk followed by a steady decline [5], 
a scenario that cannot be emulated in formula 
milk. Transport mechanisms also support the 
notion that breastmilk iron is independent of 
maternal iron status and may explain why 
maternal iron supplementation does not increase 
breastmilk iron [54]. 
 
3.2.2 Breastmilk lactoferrin and iron 
 
A multifunctional iron transport whey protein in 
breastmilk, lactoferrin, is produced and secreted 
by glandular epithelial cells in the mammary 
gland which depend on maternal weight during 
late pregnancy and maternal iron status [44]. 
Lactoferrin has efficient, dynamic antimicrobial 
potential [60]. Iron transport proteins are 
modulated by genes, responsible for the uptake 
and fate of iron, shielding the mammary gland 
and the breast fed infant against iron deficiencies 
and excesses [59].Other receptors such as the 
transferrin receptors, as found in the placenta, 
may also play a role in iron uptake and release 
into milk [61]. 
 
Upon intracellular transport of milk iron, ferrous 
iron may be stored as ferritin or may be bound to 
iron-transport proteins. Iron bound lactoferrin, is 
incorporated into iron-containing enzymes, such 
as xanthine oxidase and secreted with the milk 
fat globule [44].Levels of breastmilk iron and 
lactoferrin vary during a feed, influenced by the 
time of feeding, with foremilk and hindmilk 
differing in iron content [44,60], with milk iron 
decreasing as lactation progresses [52]. 
 
Breastmilk iron and lactoferrin were not found to 
be associated with maternal iron status. This is 
deduced as a fall in hemoglobin and serum 
ferritin in infants occurred regardless of whether 
the mother was anemic or not, correlating with 
reductions in breast milk iron and lactoferrin 
concentrations [52]. High colostral lactoferrin 
levels at about 8 mg/mL, with lower levels in 
mature milk at levels of 3.5‐4 mg/mL [60], reflect 
iron carrier mechanisms that enhance early 

innate protection, possibly also contributing to 
protection for breastfed infants even in the 
context of the current pandemic [60]. 
 
The trend of breastmilk iron content follows that 
of breastmilk lactoferrin, although the amounts of 
iron in milk is much less than that of lactoferrin. 
Noteworthy is that the iron content of breast milk 
from mothers who had preterm babies is higher 
when compared to mothers who had term babies 
[62].The stimulus for dynamic milk iron levels 
during lactation is not completely clear, but many 
factors including hormonal changes contribute to 
these levels with seeming purpose [63-68]. Early 
milk volumes maybe reduced until the mother 
establishes milk feeds, but high colostral iron 
concentrations offers critical,timely protection 
[44,60]. The mammary gland itself also utilizes 
iron for energy utilized in the processes involved 
in lactation [67].  Rodent experiments suggest 
that breastmilk contains enteral erythropoietin 
(Epo), and the administration of Epo in 
conjunction with iron, may increase hemoglobin 
and hematocrit levels [68]. 
 
3.2.3 Iron transport in the infant gut 
   
There are differences in the absorption and 
utilization of iron in the nursing infant compared 
to the formula fed infant with varying intestinal 
iron binding mechanisms and iron binding 
proteins. Additionally, the premature infant may 
have different iron absorptive mechanisms and 
risk factors compared to the term infant [44,69-
75]. 
 
A substantial proportion (33%) of breastmilk iron  
is in milk fat , specifically in the outer fat globule 
membrane contained in xanthine oxidase, which 
has receptors for iron binding, and much less in 
the inner fat globule membrane and triglyceride 
core. The whey component has 58% of iron and 
9% of breastmilk iron is in casein [44]. Iron is 
bound to lactoferrin in milk whey which is not 
significantly found in some infant formula [64]; 
lactoferrin and other iron binding proteins in 
breastmilk could contribute to high iron 
bioavailability despite relatively low breastmilk 
iron levels.  
  
It is suggested that iron redistribution may occur 
in the gastrointestinal tract such that most iron is 
incorporated into lactoferrin [44], unique iron 
absorption by a specific receptor in the small 
intestine of newborn infants is proposed [66,70]. 
A recent study found that urinary hepcidin levels 
in infants fed breastmilk compared to formula 
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were lower, suggesting that the lower infant 
hepcidin levels contribute to milk iron 
bioavailability [71]. 

   
Factors such as milk ferric reductase activity and 
others are linked to ferric iron solubilization and 
enhanced absorption and citric acid solubilizes 
the ferric iron, reduced by other heat labile 
components leading to increased uptake in 
intestinal cells [44,72,73]. 

  
The constituents in gold standard infant nutrition 
when compared to milk formula promote iron 
absorption. Breastmilk lactose, its ideal protein 
content , phosphate and calcium levels as well 
as its hormone profile such as epidermal growth 
factor-like substances all augment iron 
absorption contributing to superior bioavailability 
[44]. 
 
Infants may have age related differences in iron 
homeostasis. No difference was found between 
iron-supplemented and unsupplemented infants 
at 6 months of age, unsupplemented infants had 
higher iron absorption at 9 months of age, 
suggesting that homeostatic regulation of iron 
absorption although absent in young infants , 
matures by 9 months of age [10,74]. Changes in 
the regulation of iron absorption between 6 and 9 
months enhance the infant's ability to adapt to a 
low-iron diet and may help to avoid iron 
deficiency despite low iron intakes at this age . In 
addition to absorption, the utilization of iron by 
the breastfed infant, was significantly greater 
than in formula-fed infants over time [75]. 
 
3.3 Breastfed Infants and Iron Status 
  
Dorrea (2000) found that there is no support for 
the need of extra iron (or copper, of which 
metabolism is interrelated to that of iron), besides 
amounts provided by milk in the full-term breast-
fed infant, at least during the first 6 months [76]. 
Indirect support that the low quantities of 
breastmilk iron is sufficient for most infants can 
be deduced from studies of iron content in infant 
formula ; where reducing iron content in formula 
from 8 to 2 mg/L did not increase risk for iron 
deficiency at 4 or 6 months of age [77]. Maternal 
conditions such as infections, undernutrition, 
adolescent motherhood, environmental variables, 
iron reserves, together with maternal diet and 
smoking and the use of hormonal contraceptives 
before and during lactation do not seem to 
reliably affect milk mineral concentrations 
including iron [54,76]. 
  

However, if exclusive breastfeeding is for more 
than 6 months in developing countries there is 
predisposition to anemia, especially among 
mothers with a poor iron status, where maternal 
anemia was independently (P = 0.03) associated 
with a 3-fold increased risk of infant anemia [5]. A 
lower infant Hb at 9 months was linked to 
increased duration of expressed breastmilk in 
mothers with a history of anemia (β = −0.07, P = 
0.003), but not among mothers without such 
history [5]. However, extreme conditions such as 
severe maternal anemia can still have some 
impact on breastmilk iron [78]. 
 

Most healthy term infants require iron rich 
weaning foods after 4-6 months of age and 
additional supplemented iron may be considered 
if such foods are not easily available or 
accessible [75]. Unlike full term infants, who may 
develop iron deficiency in the second half of 
infancy, if predisposed by prolonged  
breastfeeding without the addition of proper 
weaning foods or by any other risk factor, 
preterm infants are believed to be at risk for 
developing iron deficiency much earlier [21]; in 
these cases the benefits of iron supplementation 
must be carefully weighed against potential risks 
of iron excesses [79]. 
 

4. CONCLUSION 
  
The healthy body thrives on optimal iron 
balances as both iron deficiency and iron excess 
effect immediate and long term health. The 
dynamic homeostasis of iron carefully develops 
through prenatal and pregnancy- related events, 
followed by birthing and postnatal scenarios, and 
also embrace unique homeostatic methods in the 
lactating mammary glands and in the nursing 
infant’s gut.   
 

Natural checks and balances involving the 
homeostasis of iron, and possible differences in  
homeostatic mechanisms at various stages in 
early life, highlight complex pathways used in the 
physiological maintenance of body iron levels. 
The placenta , an organ enabling the viability of 
the feto-maternal unit , has capacity for a dual 
role in supporting iron transfer from mother to 
fetus and at the same time, protecting against 
free radical damage due to excess iron.  
 

A woman’s iron status during pregnancy also 
impacts the iron status of her fetus and the 
newborn child, and for some time thereafter. The 
iron transferred to the fetus in the last trimester 
and the iron stores from RBC hemolysis provide 
for much iron in the young infant. Additionally, 
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holistic maternal health and the will to sustain 
exclusive breastfeeding for 6 months also 
provide some differences in iron bioavailability in 
the breastfed compared to the formula fed infant. 
Check and balances of iron absorption and its 
regulatory control take time to mature in the 
newborn. A healthy, exclusively breastfed full 
term infant whose mother was iron replete prior 
to and during pregnancy does not require 
additional iron in the first six months of life. Risk 
factors in the mother or infant necessitate 
individualized evaluation for iron 
supplementation.  
 
The complex early mechanisms involved in 
maintaining iron equilibrium reflect a carefully 
selected evolution in the homeostasis of this 
important mineral. Likewise, it is important that 
every clinical scenario that may consider iron 
therapy warrants deliberation on benefits of 
adequate iron weighed against the dangers of 
excess iron . A thoughtful, thorough evaluation of 
the individual clinical setting with reflection on the 
biological methods of early iron equilibrium is 
educational. 
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