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1 Introduction

Fractional Calculus (FC) is considered a powerful tool to solve problems which arises from engineering, physics
and other applied sciences [1, 2, 3]. Although its study has been advanced considerably in the decade of 1970,
its origin dates back to the emerge of the well-known calculus of “integer” order. Many researchers nowadays
consider that arbitrary order calculus plays a prominent role in modelling phenomena. In Ref. [4] a historical
approach of the development of the fractional calculus is presented. In Ref. [5] the development of fractional
calculus over the last decades and some recent contributions and applications are discussed. In Ref. [6], some
techniques involving special functions, fractional calculus as well as their applications in partial differential
equations, such as diffusion and advection phenomena, are introduced.

It is well known that fractional calculus can be studied over several approaches, such as Riemann-Liouville,
Caputo, Riesz and Riesz-Feller derivatives [7, 8, 9]. In Ref. [10] a new fractional integral which generalizes the
Riemann–Liouville and Hadamard fractional integrals into a single form is introduced, giving rise to a general
definition of fractional derivative. Based on this latter work, in Ref. [11] a new differential operator of arbitrary
order defined by means of a Caputo type modification of the generalized fractional derivative is discussed.

An even more general case is discussed in Ref. [12]. Based on a function Ψ(x) which presents some specific
properties, a new fractional operator is introduced and called Ψ-Hilfer fractional derivative. Recently, a
modification in the latter definition is proposed in Ref. [13], in terms of the so-called gamma-kappa function. It
can be showed that all fractional derivatives cases cited in [11] and [12] can be recovered in terms of this new
definition, which has been named (κ,Ψ)- Hilfer fractional derivative.

This paper is organized in the following form: In Section 1, the preliminaries concepts related to the gamma-
kappa function and its integral transforms are presented. In Section 2 the fractional integrals in terms of the
Ψ function and its particular case (κ, ρ)-Hilfer fractional derivative are presented. In Section 3 the κ-Hilfer
fractional derivative is proposed and some particular cases are discussed. In Section 4 some integral transforms
are applied to κ fractional operators, namely the Jafari transform to κ-Hilfer fractional derivative, the Mellin
transform to (κ, ρ)-Hilfer fractional derivative and the Fourier transform to κ-Riesz fractional derivative. In
Section 5 the Jafari transform is used to solve the fractional radial diffusion problem, where are ploted the
graphs to some numeric values. In the last one, some conclusions and observations are made.

2 Preliminaries

In order to introduce a new fractional operator, this section recovers the concepts of κ-gamma function and
k-beta function as well as their properties.

Definition 2.1 ([14] k-gamma function). Let z ∈ C, Re(z) > 0 and k > 0. The k-gamma function is defined
as

Γk(z) =

∫ ∞
0

tz−1e−
tk

k dt. (2.1)

In the limit k → 1, the well-know gamma function is recovered. In Ref. [15], some interesting expressions are
derived, such as:

• Relation between κ-gamma and gamma functions:

Γk(z) = k
z
k
−1Γ

( z
k

)
. (2.2)

Proof. Taking the change of variables u = tk/k, we obtain:

Γk(z) = k
z−k
k

∫ ∞
0

u
z
k
−1e−udu = k

z
k
−1Γ

( z
k

)
.
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• k-gamma function of z = k:
Γk(k) = 1. (2.3)

Proof. Using the expression in Eq.(2.2), we obtain

Γk(k) = k
k
k
−1Γ(1) = 1.

• Recursion Formula:
Γk(z + k) = zΓk(z). (2.4)

Proof. Using the expression in Eq.(2.2) and the gamma function recursion formula, we obtain

Γk(z + k) = k
z+k
k
−1Γ

( z
k

+ 1
)

= zk
z
k
−1Γ

( z
k

)
.

• Reflection formula:

Γk(z)Γk(k − z) =
π

k sin
(
πz
k

) . (2.5)

Proof. Using the expression in Eq.(2.2) and the gamma function reflection formula, we obtain

Γk(z)Γk(k − z) =
1

k
Γ
( z
k

)
Γ
(

1− z

k

)
=

π

k sin
(
πz
k

) .

Definition 2.2 ([14] k-Pochhammer symbol). Let z ∈ C, k ∈ R and m ∈ N+. The k-Pochhammer symbol is

(z)m,k = z(z + k)(z + 2k) . . . (z + (m− 1)k). (2.6)

Using the property in Eq.(2.4), the k-Pochhamer symbol in Eq.(2.6) may be rewritten in terms of the k-gamma
function, that is,

(z)m,k =
Γk(z +mk)

Γk(z)
. (2.7)

• The k-gamma function may be expressed in terms of k-Pochhamer symbols as it follows:

Γk(z) = lim
n→∞

n!kn(nk)
z
k
−1

(z)n,k
. (2.8)

Proof. The product formula definition is given by [23]

Γ (z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
.

Taking the change of variables z → z − 1 and using the gamma function reflection formula, this expression can
be rewritten as

Γ (z) = lim
n→∞

n!nz−1

z . . . (z + n− 1)
.
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Replacing the latter in Eq.(2.2), we obtain

Γk (z) = k
z
k
−1 lim

n→∞

n!n
z
k
−1

z( z
k

+ 1) . . . ( z
k

+ n− 1)
(2.9)

= lim
n→∞

k
z
k

+n−1n!n
z
k
−1

z(z + k) . . . (z + (n− 1)k)
= lim
n→∞

n!kn(nk)
z
k
−1

(z)n,k
. (2.10)

Definition 2.3 ([14] κ-beta function). Let z, y ∈ C, Re(z) > 0, Re(y) > 0, and k > 0. The k-beta function
is given by

Bk(y, z) =
1

k

∫ 1

0

u
y
k
−1(1− u)

z
k
−1du. (2.11)

It follows directly from the definition that the relation between the k-beta and beta functions are given by

Bκ(x, y) =
1

κ
B
(x
κ
,
y

κ

)
. (2.12)

The well-known expression for the beta function in terms of gamma functions is also valid for the the k-beta
function, that is,

Bk(y, z) =
Γk(y)Γk(z)

Γk(y + z)
. (2.13)

The integral in Eq.(2.13) can be identified as a beta function. It follow from the relation in Eq.(2.2) that

Bk(y, z) =
1

k
B
(y
k
,
z

k

)
=

1

k

Γ
(
y
k

)
Γ
(
z
k

)
Γ
(
y+z
k

) =
k2−y−zΓk(y)Γk(z)

k2−y−zΓk(y + z)
=

Γk(y)Γk(z)

Γk(y + z)
.

Definition 2.4 ([16] Mittag-Leffler). Let z ∈ C, Re(α) > 0, Re(σ) > 0 and Re(γ) > 0:

Eγα,σ(z) =

∞∑
m=0

(γ)m
Γ(αk + σ)

zm

m!
(2.14)

where (γ)m is Pochhammer symbol.

2.1 Integral transforms

Definition 2.5 ([17] Mellin transforms). Let f(x) be a real-valued function defined on the interval (0,∞).
The Mellin transform F (s) of the function f(x) is denoted by M [f(x)] (s), and defined as

M [f(x)] (s) =

∫ +∞

0

f(x)xs−1 dx, (2.15)

where k1, k2 ∈ R and s ∈ C such that k1 < <(s) < k2.

The inverse of the Mellin transform is denoted by M−1 [F (s)] (s) = f(x), and defined as

M−1 [F (s)] (x) =
1

2πi

∫ k+i∞

k−i∞
F (s)x−s ds, (2.16)

where k is a real constant such that k1 < k < k2.
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Definition 2.6 ([18] Jafari transform). Let h(t) be a integrable function defined for t ≥ 0 and p(s), q(s)
positive real functions. The general integral transform T of the h(t) defined by

T [h(t)](s) = p(s)

∫ +∞

0

h(t)e−q(s)tdt, (2.17)

generalizes the classical integral transform like Sumudu and Laplace transform. Since it has been introduced by
H. Jafari, it will be referred as Jafari transform in this work. The interested reader can find more details in Ref.
[18].

Theorem 2.1 ([18] Jafari transform convolution). Consider the functions h1(t), h2(t) and their Jafari
transforms H1(s), H2(s), respectively. The Jafari transform of the convolution product of h1 and h2 are given
by

T [h1 ? h2](s) = T
[∫ ∞

0

h1(τ)h2(t− τ)dτ

]
(s) =

1

p(s)
H1(s)H2(s). (2.18)

Theorem 2.2 ([18] Jafari transform of the derivative). If f(t) and its first n derivatives are differentiable
then

T
[
f (n)(t)

]
(s) = qnT [f(t)](s)− p(s)

n−1∑
i=0

qn−1−i(s)f (i)(0). (2.19)

Proposition 2.1 ([19] Jafari transform of the Mittag-Leffler function). Let 0 < α < 1 and λ ∈ R such that

q(s) <| λ |
1
α

T
[
tσ−1Eγα,σ (λtα)

]
=

p(s)

q(s)σ
1(

1− λ
q(s)α

)γ (2.20)

Definition 2.7 ([1] Fourier transforms). The Fourier transform of the function g(x), denoted by F [g(x)](ω) =
G(ω), with ω ∈ R, is defined by

F [g(x)](ω) = G(ω) =
1√
2π

∫ +∞

−∞
g(x)eiωxdx. (2.21)

The inverse Fourier transform, denoted by F−1[G(ω)] = g(x) is given by

F−1[G(ω)] =
1√
2π

∫ +∞

−∞
G(ω)e−iωxdω. (2.22)

Remark 2.1. The definition of the Fourier transform may present slight variations depending on the source, but
provided that their normalisation constants are chosen in a way that the original function is recovered by the
inverse transform, this is not substantial.

2.2 Fractional operators

In this subsection, the (k,Ψ)-fractional integrals [13] is introduced by means of a k-fractional integral which
generalizes the classical Riemann-Liouville fractional integral.

Definition 2.8 ([20](k,Ψ)-Riemann-Liouville fractional integrals). For a real number k > 0 and a
function Ψ(x), increasing and positive monotone on [0,∞) having a continuous derivative Ψ′(x) on (0,∞), the
left- and right-sided (k,Ψ)-Riemann-Liouville fractional integral of order γ > 0 of a function f ∈ L1[a, b] are
defined by (

kJ γa+;Ψ
f
)

(x) :=
1

kΓk(γ)

∫ x

a

Ψ′(ξ)f(ξ)

[Ψ(x)−Ψ(ξ)]1−
γ
k

dξ, x > a, (2.23)
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and (
kJ γb−;Ψ

f
)

(x) :=
1

kΓk(γ)

∫ b

x

Ψ′(ξ)f(ξ)

[Ψ(ξ)−Ψ(x)]1−
γ
k

dξ, x < b, (2.24)

respectively.

Proposition 2.2 ([13] Semigroup property ). Let µ1, µ2, κ ∈ R+. Then,

kJ µ1

a+;Ψk
J µ2

a+;Ψ
= kJ µ1+µ2

a+;Ψ
. (2.25)

Definition 2.9 ((κ, ρ)-Weyl Integrals). Taking Ψ(x) = xρ/ρ with ρ > 0 and x ≥ 0 in the expressions given
in Definition 2.8 and rearranging we obtain the left- and right-sided k-fractional integrals

(ρ
kJ

γ

a+
ϕ
)

(x) =
ρ1− γ

k

kΓk(γ)

∫ x

a

tρ−1ϕ(t)

(xρ − tρ)1− γ
k

dt, (2.26)

and (ρ
kJ

γ

b−
ϕ
)

(x) =
ρ1− γ

k

kΓk(γ)

∫ b

x

tρ−1ϕ(t)

(tρ − xρ)1− γ
k

dt, (2.27)

respectively. Taking a → −∞ and b → ∞ in Eq.(2.26) and Eq.(2.27), respectively, we obtain interesting left-
and right-sided k-fractional integrals, given by

(ρ
kJ

γ
+ϕ
)

(x) =
ρ1− γ

k

kΓk(γ)

∫ x

−∞

tρ−1ϕ(t)

(xρ − tρ)1− γ
k

dt, (2.28)

and (ρ
kJ

γ
−ϕ
)

(x) =
ρ1− γ

k

kΓk(γ)

∫ ∞
x

tρ−1ϕ(t)

(tρ − xρ)1− γ
k

dt. (2.29)

Given the similarities with the Weyl fractional integrals [21], we propose that Eq.(2.28) and Eq.(2.29) be called
left- and right-sided (κ, ρ)-Weyl Integrals, respectively.

Definition 2.10 ([22] Hilfer-Type fractional derivative). Let γ denote the order of the fractional
derivative and n ∈ Z+ such that n − 1 < γ ≤ n, and β denote its type, with 0 ≤ β ≤ 1. The (left- and
right-sided) fractional derivatives of ϕ with respect to x, for ρ > 0 and κ > 0, are given by(

ρ
kD

γ,β
a± ϕ

)
(x) =

(
ρ
κJ

β(nκ−γ)
a±

(
±κx1−ρ d

dx

)n
(ρκJ

(1−β)(nκ−γ)
a± ϕ)

)
(x). (2.30)

for functions such that the expression on the right hand side exists.

The (κ, ρ)-fractional derivative generalizes several classical fractional operators [22]. In particular, taking
(k, ρ)→ (1, 1) we recover Riemann-Liouville and Caputo operators (associated with translations) and Hadamard
operator (associated with dilations). A Particular cases are given to follow:

• The κ-Hilfer fractional derivatives are introduced by taking ρ→ 1 in Eq.(2.30), obtaining(
κD

γ,β
a± ϕ

)
(x) =

(
κJ

β(nk−γ)
a±

(
±κ d

dx

)n
(kJ

(1−β)(nk−γ)
a± ϕ)

)
(x). (2.31)

• The κ-Riemann-Liouville fractional derivatives is given for β → 0 the κ-Hilfer fractional derivatives are
given by (

RL
κD

γ
a±ϕ

)
(x) =

(
±κ d

dx

)n (
κJ

(nκ−γ)
a± ϕ

)
(x). (2.32)
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• The κ-Caputo fractional derivatives is given for for β → 1 the κ-Hilfer fractional derivative reduces to(
C
kD

γ
a±ϕ

)
(x) =

(
kJ

(nκ−γ)
a±

(
±κ d

dx

)n
ϕ

)
(x). (2.33)

• κ-Weyl fractional derivatives For β → 0 and a± → ±∞ the κ-Hilfer fractional derivative reduces to(
W
k D

γ
±ϕ
)

(x) =

(
±κ d

dx

)n (
kJ

(nκ−γ)
± ϕ

)
(x). (2.34)

3 Main Results

3.1 Integral transforms to κ fractional operators

Theorem 3.1 (Jafari transform of the κ-Hilfer). The Jafari transform of the κ-Hilfer fractional derivative,
order n− 1 < γ < n and 0 < β < 1 is given by:

T
[(

κDγ,β0+

)
ϕ(x)

]
(s) = (κq(s))

γ
κ T [ϕ(x)](s)− p(s)(κq(s))−

β(nκ−γ)
k (3.1)

×
n−1∑
i=0

κnq(s)n−i−1

(
d

dt

)i
κJ (1−β)(nκ−γ)ϕ(0+) (3.2)

Proposition 3.1 (Mellin transform of (κ, ρ)-Riemann-Liouville fractional integrals). Let γ > 0,
and ρ > 0. The Mellin transform of the (κ, ρ)-Riemann-Liouville fractional integrals Eq.(2.26) and Eq.(2.27)
are given by:

M
[(ρ
kJ

γ
a+ϕ

)
(x)
]

(s) =
ρ−

γ
k Γk

(
k − ks

ρ
− γ
)

Γk
(
k − ks

ρ

) M[ϕ]
(
s+

ργ

k

)
. (3.3)

Proof. Applying Mellin tranform to Eq.(2.23), we have

M
[(ρ
κJ γa+ϕ

)
(x)
]

(s) =
ρ1−γ/k

κΓκ

∫ ∞
0

xs−1

∫ x

a

ξρ−1ϕ(ξ)

(xρ − ξρ)1−γκ dξ dx

=
ρ1−γ/k

κΓκ

∫ ∞
a

ξρ−1ϕ(ξ)

∫ ∞
ξ

xs−1

(xρ − ξρ)1−γκ dx dξ. (3.4)

Taking the change of variables u = (ξ/x)ρ in respect to the variable x, we obtain

M
[(ρ
κJ γa+ϕ

)
(x)
]

(s) =
ρ1−γ/k

κΓκ

∫ ∞
a

ξs−ρ−ργ/κ

ρ

∫ 1

0

u1−s/ρ−γ/κ−1 (1− u)γ/κ−1 du dξ

=
ρ−γ/κ

κΓκ(γ)
B

(
1− s

ρ
− γ

κ
,
γ

κ

)∫ ∞
a

ϕ(ξ)ξs+ργ/κ−1 dξ. (3.5)

Since the Riemann-Liouville fractional integral given by Eq.(2.23) is defined for x > a, it follows that the function
ϕ(x) is defined in the domain [a,∞]. This means that we could consider the function H(x−a)ϕ(x) in the domain
[0,∞], where H(x) is the Heaviside step function. Hence the Mellin transform integration can be considered for
x > a without loss of generality.

At last, with the help of the representation in terms of gamma functions for the beta function, we get to the
final expression, given by

M
[(ρ
κJ γa+ϕ

)
(x)
]

(s) = ρ−γ/κ
Γκ (κ− κs/ρ− γ)

Γκ (κ− κs/ρ)
M [ϕ(x)]

(
s+

ργ

κ

)
. (3.6)
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Corollary 3.2. Corollary Taking γ → 0 in Eq.(3.3) implies
(
ρ
κJ 0

a+ϕ
)

(x) = ϕ(x).

Theorem 3.3. Let n− 1 < γ ≤ n, n ∈ N, κ > 0, 0 < β < 1 and ρ > 0, the Mellin transform , with parameter
s, of the (κ, ρ)−Hilfer fractional derivative is given by:

M
[(

ρ
kD

γ,βϕ
)

(x)
]

=
ρ
γ
κΓκ

(
κ− κs

ρ
+ γ
)

Γκ
(
κ− κs

ρ

) M [ϕ(x)]
(
s− ργ

κ

)
. (3.7)

Proof.

M
[(

κDγ,βa+ ϕ
)

(x)
]

(s) =M
[(

ρ
κJ

β(nκ−γ)
a+

)(
κx1−ρ d

dx

)n (
J (1−β)(nκ−γ)
a+ ϕ

)
(x)

]
(s)

=
ρ
γ
κΓκ

(
κ− κs

ρ
− β(nκ− γ)

)
Γκ
(
κ− κs

ρ

)
×M

[(
κnx1−ρ d

dx

)n (
J (1−β)(nκ−γ)
a+ ϕ

)
(x)

]
(s) (3.8)

where s =
(
s+ ρβ(nκ−γ)

κ

)
. Using the result proven in Appendix A, we obtain

M
[(

κDγ,βa+ ϕ
)

(x)
]

(s) =
(−1)nκnρ

γ
κΓκ

(
κ− κs

ρ
− β(nκ− γ)

)
Γκ
(
κ− κs

ρ

) Γ
(
s
ρ

+ β(nκ−γ)
κ

)
Γ
(
s
ρ

+ β(nκ)−γ
κ

− n
)

×
Γκ
(
κ− κs

ρ
− β(nκ− γ) + nκ− (1− β)(nκ− γ)

)
Γκ
(
κ− κs

ρ
− β(nκ− γ) + nκ

)
×M [ϕ(x)]

(
s− ργ

κ

)
=
ρ
γ
κΓκ

(
κ− κs

ρ
+ γ
)

Γκ
(
κ− κs

ρ

) M [ϕ(x)]
(
s− ργ

κ

)
. (3.9)

Proposition 3.2. The Fourier transform of the
(
κJ γ±ϕ

)
(x), κ-Weyl fractional integral, given by Eq.(2.28) and

Eq.(2.29), for ρ = 1 and γ > 0, it is given by:

F
[(
κJ γ±ϕ

)
(x)
]

(ω) = (∓iκω)−
γ
κ F [ϕ(x)](ω). (3.10)

Proof. Let us start calculating the the Fourier transform of
(
κJ γ−ϕ

)
(x).

F
[(
κJ γ−ϕ

)
(x)
]

(ω) =
1

κΓκ(γ)

∫ +∞

−∞
eiωx

∫ +∞

x

ϕ(t)

(t− x)1− γ
κ

dtdx

=
1

κΓκ(γ)

∫ +∞

−∞
ϕ(t)

∫ t

−∞

eiωx

(t− x)1− γ
κ

dxdt.

Using the new variable u = t− x we get

F
[(
κJ γ−ϕ

)
(x)
]

(ω) =
1

κΓκ(γ)

∫ +∞

−∞
ϕ(t)

∫ +∞

0

eiω(t−u)

u1− γ
κ

dudt. (3.11)
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In order to evaluate the integral in respect to u, we should take the change of variables z = iωu and consider
the following contour in the complex plane: a disk of radius R→∞ in the first quadrant. It follows that

F
[(
κJ γ−ϕ

)
(x)
]

(ω) =
1

κΓκ(γ)
F [ϕ(x)](ω)

Γ
(
γ
κ

)
(iω)

γ
κ

= (iκω)−
γ
κF [ϕ(x)](ω). (3.12)

For
(
κJ γ+ϕ

)
(x), the calculations follow the same course, so we opted to omit it.

From the expression in Eq.(3.10) the following can be derived:

F
[(
κJ γ+ + κJ γ−

)
ϕ(x)

]
(ω) = 2 cos

(γπ
2κ

)
| κω |−

γ
κ F [ϕ(x)](ω). (3.13)

Theorem 3.4. The Fourier transform of the κ-Weyl fractional derivative Eq.(2.34) is given by

F
[
W
κDγ±ϕ(x)

]
(ω) = (∓iκω)

γ
κ F [ϕ](ω). (3.14)

Proof.

F
[
W
κDγ±ϕ(x)

]
(ω) = F

[(
±κ d

dx

)n (
κJ nκ−γ± ϕ

)
(x)

]
(ω)

= (±κ)n(−iω)nF
[
κJ nκ−γ± ϕ(x)

]
(ω)

= (∓iκω)n(∓iκω)−
(nκ−γ)

κ F [ϕ(x)] (ω)

= (∓iκω)
γ
κF [ϕ(x).] (ω) (3.15)

Remark 3.1. It is extremely important to notice that integral transforms for the left-sided operators like the
(κ, ρ)-Riemann-Liouville fractional integral

(
ρ
kJ

γ

b−
ϕ
)

(x) given by eq. (2.27) are not yet known for b <∞. This
problem arises when we observe that the double integrals involved in these calculations present a finite region
in its domain of integration, which we do not yet know how to deal with in the case of fractional-type integrals.

3.2 Fundamental theorem of calculus to κ-fractional operators

Definition 3.1 (κ-Riesz fractional integral). The κ-Riesz fractional integral is introduced via combination
of the Weyl integrals of order γ > 0, as it follows:

(κJ γ0 )ϕ(x) =

[
κJ γ+ϕ(x) + κJ γ−ϕ(x)

]
2 cos

(
γπ
2κ

) = g(x) ∗ ϕ(x), (3.16)

where ∗ represents Fourier convolution product and the function g is given by

g(x) =
| x |

γ
κ
−1

2κΓκ (γ) cos
(
γπ
2κ

) . (3.17)

Proposition 3.3. The Fourier transform of the κ-Riesz fractional integral of γ order, with γ > 0, it is given by

F [(κJ γ0 )ϕ(x)](ω) =| κω |−
γ
κ .F [ϕ(x)](ω) (3.18)

Proof. It follows directly from Eq.(3.10).
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Definition 3.2 (κ-Riesz fractional derivative). The κ-Riesz fractional order γ with 1 < γ < 2 is defined
as

κ∆
γ
2 ϕ(x) = −

[
W
κ Dγ+ϕ(x) + W

κ Dγ−ϕ(x)
]

2 cos
(
γπ
2κ

) = h(x) ∗ ϕ(x), (3.19)

with

h(x) = Γκ(κ+ γ) sin
(γπ

2κ

) |x|− γκ−1

π
. (3.20)

Proposition 3.4. The Fourier transform of the κ-Riesz fractional integral of γ order, with γ > 0, it is given
by:

F [κ∆
γ
2 ϕ(x)](ω) =| κω |

γ
κ F [ϕ(x)](ω) (3.21)

Theorem 3.5. Let 0 < γ < 2 the fundamental theorem associated to κ-Riesz derivative and κ-Resz integral of
γ order is: (

κ∆
γ
2 J γ0 ϕ

)
(x) = ϕ(x) (3.22)

Proof. Using the Fourier transform,

F
[
κ∆

γ
2 (J γ0 ϕ) (x)

]
(ω) =| κω |

γ
κ F [(κJ γ0 ϕ) (x)] (ω)

=| κω |−
γ
κ | κω |

γ
κ F [ϕ(x)](ω) = F [ϕ(x)](ω) (3.23)

Therefore, the relation introduced by Eq.(3.22) is true.

Theorem 3.6. The fundamental theorem of calculus associated (κ, ρ)-Hilfer fractional derivative and (κ, ρ)-
Riemann fractional integral with γ > 0 is:(

ρ
κDγ,βa ρ

κJ γa ϕ
)

(x) = ϕ(x). (3.24)

Proof.

M
[(

ρ
κDγ,βa+

ρ
κJ γa+ϕ

)
(x)
]

(s) =
ρ
γ
κΓ
(
κ− κs

ρ
+ γ
)

Γ
(
κ− κs

ρ

) M
[ ρ
κJ γa+ϕ

] (
s− ργ

κ

)

=
ρ
γ
κΓ
(
κ− κs

ρ
+ γ
)

Γ
(
κ− κs

ρ

) ρ−
γ
κΓ
(
κ− κ

ρ

(
s− ργ

κ

)
− γ
)

Γ
(
κ− κ

ρ

(
s− ργ

κ

))
×M [ϕ(x)]

(
s+

ργ

κ
− ργ

κ

)
=

Γ
(
κ− κs

ρ
+ γ
)

Γ
(
κ− κs

ρ

) Γ
(
κ− κs

ρ

)
Γ
(
κ− κs

ρ
+ γ
)M[ϕ(x)](s). (3.25)
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4 Application: Fractional Diffusion in a Cylinder

The section introduces the κ-fractional diffusion problem in a infinitely long circular cylinder of radius a > 0,
considering κ-Hilfer fractional derivative in time variable.(

κDγ,β0+ u(r, t)
)

(t) = c

(
∂2

∂r2
+

1

r

∂

∂r

)
u(r, t) +Q(r, t)

u(a, t) = 0 for t > 0

u(r, 0) = 0 for 0 < r ≤ a. (4.1)

with 0 < γ < 1, 0 < β < 1 and Q(r, t) represents one heat source inside the cylinder.

To solve this problem,we use the integral transform methodology, that is, the application of the Jafari transform
and finite Hankel transform in the diffusion problem. Firstly, appling Jafari transform in Eq.(4.1) gets

(κq(s))
γ
κ ū(r, s) = c

(
∂2

∂r2
+

1

r

∂

∂r

)
ū(r, s) + Q̄(r, s) (4.2)

where ū(r, s) = T [u(r, t)](s) and Q̄(r, s) = T [Q(r, t)](s). Applying the finite hankel transform order 0 and their
properties:

(κq(s))
γ
κ ̂̄u(ki, s) = −ck2

i ̂̄u(ki, s) + ̂̄Q(ki, s)

̂̄u(ki, s) =
̂̄Q(ki, s)

(κq(s))
γ
κ + ck2

i

̂̄u(ki, s) =
1

p(s)

(
p(s)

(κq(s))
γ
κ + ck2

i

) ̂̄Q(ki, s)

̂̄u(ki, s) =
1

p(s)

 p(s)

(κq(s))
γ
κ

(
1 +

ck2i

(q(s))
γ
κ

)
 ̂̄Q(ki, s) (4.3)

Where ki are the zeros of the zero order Bessel function. Applying the inverse Jafari transform and the inverse
finite Hankel transform, we get:

u(r, t) =
2κ−

γ
κ

a2

∞∑
i=1

J0(rki)

J2
1 (aki)

∫ ∞
0

τ
γ
κ
−1Eγ/κ,γ/κ

(
−ck2

i (t− τ)γ/κ
)
Q̂(ki, t)dτ. (4.4)

• To consider Q(r, t) = Q0 where Q0 is arbitrary number. The Eq.(4.4) gets:

u(r, t) =
κ−

γ
κQ0

4c
(a2 − r2)− 2κ−

γ
κQ0

ac

∞∑
i=1

J0(rki)

k2
i J1(aki)

Eγ/κ

(
−ck2

i t
γ/κ
)
. (4.5)

• To consider Q(r, t) = Q0
δ(r)
r
f(t), we obtain

u(r, t) =
2κ−

γ
κQ0

a2

∞∑
i=1

J0(rki)

J2
1 (aki)

∫ ∞
0

f(τ)τ
γ
κ
−1Eγ/κ,γ/κ

(
−ck2

i (t− τ)γ/κ
)
dτ. (4.6)

Note that κ→ 1,γ → 1 recovers the the same result found in [4].

The graphs to equation Eq.(4.5) are simulated to follow via, considering some values to variables Q0, c, a, r and
the parameters γ and κ = 1.
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Fig. 1. Graph to u(r, t) in Eq.(4.5) with Q0 = c = 200, a = 1, γ → 1 and κ = 1.

Fig. 2. Graph to u(r, t) in Eq.(4.5) with Q0 = c = 200, a = 1, γ → 0.8 and κ = 1
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Fig. 3. Graph to u(r, t) in Eq.(4.5) with Q0 = c = 200, a = 1, γ → 0.7 and κ = 1.

Fig. 4. Graph to u(r, t) in Eq.(4.5) with Q0 = c = 200, a = 1, γ → 0.66 and κ = 1
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Fig. 5. The diagram some particular cases Jafari transform

5 Concluding Remarks

The results obtained in this work shows the importance of κ-Hilfer fractional derivative, since this operator
generalizes several well-known definitions of fractional derivatives. The most important results consolidates the
so-called κ fractional operators in terms of integral transforms. In particular, we highlighted the calculation of
the Jafari transform to κ-Hilfer fractional derivative as well as the introduction of κ-Riesz fractional operators.
At last, the fundamental theorem of the calculus to κ-fractional operators, and Hilfer-Type fractional derivative
are presented. It is important to notice that the prelude of the theory to κ-fractional operators present some
mistakes, that has been repaired over time, that confirms the value of this article. The Jafari transform is applied
in a problem radial diffusion with κ−Hilfer fractional derivative in the time, obtaining the explicit solution to
equation. Finally, The graphs to Eq. (4.5) are shown by figures Fig.4, Fig.4, Fig.4 and Fig.4 building for Python
language in its version 3.6, using the Pycharm IDE. The graphs are surfaces that deforms in agree the value
of the parameter γ, which possibilities the indication for the special physics situation to adjust the solution to
obtain the better results. The natural continuation of the paper is the generalization of the Jafari transform,
that is, Ψ-Jafari transform that generalize Ψ-Laplace and Ψ-Shehu transforms. The integral transforms are
associated with Linear fractional equations in terms Ψ-Hilfer fractional derivative.
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Appendix

A Mellin Transform of the derivative as in Eq. (3.8)

In Eq. (3.8), we need to deal with the Mellin transform of a nth order derivative in the following form:

M
[(
x1−ρ d

dx

)n
r(x)

]
(s) = (−1)nρn

Γ
(
s
ρ

)
Γ
(
s
ρ
− n

)M [r(x)] (s− nρ). (A.1)

Proof. Let us use finite induction. Starting with n = 1, we have

M
[
x1−ρ dr(x)

dx

]
=

∫ ∞
0

xs−ρ
dr(x)

dx
dx. (A.2)

Using integration by parts, we obtain

M
[
x1−ρ dr(x)

dx

]
=
(
xs−ρr(x)

)∞
0
− (s− ρ)

∫ ∞
0

xs−ρ−1r(x)dx. (A.3)

Here we must observe that r(x) must be a function such that x−ρr(x) vanishes both for x = 0 and x→∞.
Under these conditions, we have that

M
[
x1−ρ dr(x)

dx

]
= − (r − ρ)M [r(x)] (s− ρ) . (A.4)

Let us now perform the induction step. Assuming Eq. (A.1) is valid for some n, we have:

M

[(
x1−ρ d

dx

)n+1

r(x)

]
=M

[(
x1−ρ d

dx

)n(
x1−ρ dr(x)

dx

)]
(A.5)

= (−1)nρn
Γ
(
s
ρ

)
Γ
(
s
ρ
− n

)M [(
x1−ρ dr(x)

dx

)]
(s− nρ) (A.6)

= (−1)nρn
Γ
(
s
ρ

)
Γ
(
s
ρ
− n

) ∫ ∞
0

xs−(n+1)ρ dr(x)

dx
dx (A.7)

= (−1)nρn
Γ
(
s
ρ

)
Γ
(
s
ρ
− n

) [(xs−(n+1)ρ dr(x)

dx

)∞
0

(A.8)

−[s− (n+ 1)ρ]

∫ ∞
0

xs−(n+1)ρ−1r(x)dx

]
. (A.9)

Once more, we must assume that xs−(n+1)ρ dr(x)

dx
vanishes for x→ 0 and x→∞ and thus we obtain.

M

[(
x1−ρ d

dx

)n+1

r(x)

]
=(−1)n+1ρn+1

Γ
(
s
ρ

)
Γ
(
s
ρ
− n

) [ s
ρ
− (n+ 1)

]
×M [r(x)] (s− (n+ 1)ρ) . (A.10)

At last, using Gamma’s reflection formula, we obtain the desired result.

Examining this proof, we notice that we must use this result with caution, since it is valid only for functions
r(x) such that x−ρr(x) and x−ρdr(x)/dx vanishes for x→ 0 and x→∞. For such cases, we have the interesting
result that the derivative both in the sense of Riemann Liouville and Caputo have the same Mellin transform.
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B Integral transforms type Laplace transform

The following diagram presents some particular cases of the Jafari transform. These results can be found in
reference [18](Jafari, 2021).
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