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ABSTRACT 

By analysis of historical data of the ionosphere, it is suggested to apply grey theory to ionospheric short-term forecast-
ing, grey range information entropy is defined to determine the optimum grey length of the sample sequence, the pre-
diction model based on residual error is constructed, and the observation data of multiple ionospheric observation sta-
tions in China are adopted for test. The prediction result indicates that the average grey range information entropy cal-
culation results reflect the cyclical effects of solar rotation, precision of the forecasting method in high latitudes is high-
er than low latitudes, and its error is large relatively in more intense solar activity season, the effect of forecasting 1 day 
in advance of average relative residuals are less than 1 MHz, the average precision is more than 90%. It provides a new 
way of thinking for the ionospheric foF2 short-term forecast in the future. 
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1. Introduction 

Ionosphere is an important constituent part of solar ter-
restrial space. Owing to the influence from solar wind 
and geomagnetic field at the top and the impact from 
middle atmosphere at the bottom, ionosphere always 
changes along with time and space, and there also exist 
daily variation and time variation except the general di-
urnal variation, seasonal variation and 11-year solar cy-
cle variation.  

The critical frequency foF2 of the ionosphere F2 layer 
is one of the most important parameters of the ionosphere, 
measurement and prediction of this parameter are quite 
significant, and are also the hotspot of relevant domestic 
and overseas professional researches. For a long time, 
scholars from home and abroad have done a large num-
ber of studies on ionospheric short-term prediction, and 
raised multiple methods [1]: The autocorrelation method 
[2] using linear filter to deal with observation data fore-
cast. Multiple linear regression method [3] using a large 
number of observation data training correlation coeffi-
cient forecast. The artificial neural network method [4, 5] 
simulates ionospheric nonlinear change process, and 
forecast scale agile. The ionosphere correction model 
during disturbance [6] takes full advantages of influence 
factors like geomagnetic latitude and season at the ob-
servation point to correct the prediction result. The inte-

grated model [7] reasonably determines the weights of 
different forecast methods, and gives full play to the 
characteristics of each method forecast. Based on analy-
sis of a large amount of historical data about foF2 , this 
paper attempts to achieve the short-term forecasting 
based on grey theory 

2. The Basic Principle of Grey Theory 

Grey theory arose aimed at uncertainty issues like a small 
quantity of data and inexperience, and GM (1,1) model is 
the core of the grey theory prediction model[8], its 
working principle as shown in Figure 1 shows. 

In Figure 1, the parameter a to be estimated is the de-
velopment coefficient, and b is the grey action. z(1)(k) is 
the white background value, and the value is the genera-
tion sequence of mean value near x(1)(k) . Since x(0)(k) is 
the measured datum, it is the “whitening effect”, and 
therefore, the action mechanism of GM(1,1) model is in 
line with grey cause whitening effect law. The specific 
expression such as Equation (1) shows. 

       0 1x k az k b             (1) 

 

 
*Project supported by the Natural Science Foundation of Shaanxi 
Province (SJ08-2T06) Figure 1. GM(1,1) model working principle diagram. 
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3. Grey Theory Modeling Analysis 

Variation of the ionosphere is a complex and highly non-
linear process, and its variation rule cannot be described 
precisely by analytical methods, but its change within a 
short period is relatively stable. In a short time, the varia-
tion of foF2 has some certain correlation which can be 
used for prediction [9]. The inter-record gap of historical 
data about foF2 cannot be infinitely small, and it cannot 
be forecast by establishing white system, so the historical 
data used for prediction in a short time can be regarded 
as grey. Therefore, foF2 short-term forecasting research 
based on grey theory can be deployed. 

3.1. Grey Range Information Entropy 

The size of the selected sample data is related to the effi-
ciency and precision of the prediction model. The re-
corded foF2 daily average is arranged as an equally 
spaced discrete time sample sequence S, such as Equa-
tion (2) shows: 

 1 2 1, ,..., ,N NS s s s s              (2) 

In Equation (2), N is grey forecast length.  
The mean value S  of the sequence S is taken as the 

reference value, and the grey range measure can be 
adopted for data analysis according to the definition of 
grey relational coefficient and norms, to determine the 
optimum value of N. 

The grey range measure of s-i and S  in the discrete 
sample is defined, as is shown in Equation (3): 
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In Equation (3),  is the resolution coefficient,   (0,1]. 
Based on information theory, the grey range informa-

tion quantity is defined, as is shown in Equation (4): 

( ) ln ( , )iGI s Gd s S   i           (4) 

The grey range information entropy of the sample se-
quence S is presented in Equation (5): 
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For the sample sequence S, the smaller the GI(s-i) of 
the point datum s-i is, which is the smaller the grey range 
information quantity is, the smaller the uncertainty among 
the sample point data is [8]. The value magnitude of GH(S) 
reflects the average uncertainty of data in the sample 
sequence, and t the optimum value of N is taken from the 
sample sequence to minimize the value of GH(S). 

3.2. Based on the Residual Error Correction 
GM(1,1) Model 

S1 is set as AGO sequence of the sample sequence S, then, 
according to the Equation (1) the sample sequence S pre-
diction model of mathematical expression such as Equa-
tion (6) shows: 

1( ) ( )s k a p k b               (6) 

In Equation (6), s(k) is s-k in the sample sequence S. 
p1(k) is the white background value, and the value is the 
generation sequence of mean value near S1. 

In addition, suppose  as the parameter se-
quence, and set: 
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Therefore, the least square estimation parameter se-
quence of the Equation (6) is shown in Equation (8): 

1ˆ ( )T Ta C C C X            (8) 

The GM(1,1) model residual error is defined as is 
shown in Equation (9): 

ˆ( ) ( ) ( )k s k s k             (9) 

In Equation (9), ˆ( )s k  is the predicted value of the 
GM(1,1) model built by the sample sequence S. 

In order to increase the prediction precision of GM(1,1) 
model, the GM(1,1) model of residual error value is es-
tablished in this paper, and then the predicted value 
ˆ(N m)   of the residual error GM(1,1) is added into 

the original predicted value ˆ( )s N m , to correct the 
GM(1,1) model built by the sample sequence S. 

The residual error sequence {(k)} is truncated with a 
length of N-l, and the residual error end-piece sequence 
tail that can be used for modeling is obtained, as is indi-
cated in Equation (10). 

 tail | ( 1) |,| ( 2) |,...,| ( ) |l l N          (10) 

In a similar way, GM(1,1) model is established for the 
residual error truncation sequence tail, and its time re-
sponse function is shown in Equation (11): 
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The residual error truncation prediction sequence 

tailˆ ( )k  is adopted to correct the prediction sequence 
ˆ( )s k  of s(k), and the corresponding corrected prediction 

value can be gained by deduction, as is shown in Equa-
tion (12): 
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In Equation (12), tailˆ ( 1k )   has the same symbol as 
the residual error end piece (k+1). 

The predicted value of appointed time zone can be ob-
tained via GM(1,1) model, and the predicted value of the 
point m after the point N is 

ˆ ˆ( ) ( ),  1,2,s k s N m m     . 

3.3. Error processing 

According to the residual error value ˆ( ) ( )s k s k  of the 
residual error GM(1,1) model, the relative residual error 
(k) and average relative residual error (avg) of this 
model can be defined, as is presented in Equation (13). 
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In order to estimate the mean square error of the pre-
dicted value, set: 
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In which, , and by deduction, 
the mean square error estimation Equation of the pre-
dicted value is shown in Equation (15): 
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The precision  of the predicted value can be ex-
pressed as: 
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4. Forecasting Results and Analysis 

The foF2 data adopted for analysis come from literature 
[10], ionospheric observation stations are listed in Table 
1. 

As is shown in Equation (5), the foF2 observed data 
recorded by these 4 observation stations in 2009 are cal-
culated and tested, and the average values of the annual 
grey range information entropy under different grey 
forecast length values of N are presented in Figure 2. 

In Figure 2, two valley values appear for the grey 
range information entropy, and they lie in two value in-
tervals of N which are [6,9] and [26,28] respectively. 
Therefore, when the grey forecast length value of N is 
taken from [6,9] and [26,28], uncertainty among the 
sample sequence data can be regarded as the minimum. 
Since in the interval of [6,9], GH value vibrates and is 

instable, the grey forecast length value of N is set as 27 in 
this paper, which also reflects the 27-day periodic influ-
ence of solar rotation on the earth. 
 

Table 1. Locations of the ionospheric stations. 

Station Name Northern Latitude/() Eastern Longitude/() 

Mohe(MH) 53.48 122.37 

Beijing(BJ) 39.92 116.46 

Wuhan(WH) 30.52 114.31 

Sanya(SY) 18.15 109.30 

 

 

Figure 2. Average grey range information entropy of data 
from observation stations in 2009. 
 

The residual error GM(1,1) model is established ac-
cording to the measured data from stations in 2009 re-
spectively, the prediction error is analyzed according to 
spring, summer, autumn and winter, and the average rel-
ative residual error (avg) and the predicted value preci-
sion  of the prediction model 1 day and 2 days in ad-
vance in different seasons from different ionospheric 
observation stations are listed in Table 2 and Table 3. 

It can be gained from Table 2 and Table 3 that error 
of ionospheric short-term prediction is similar to varia-
tion characteristics of the ionosphere, and both of them 
are related to geographical positions, seasons and solar 
activities. Under the calculation of grey theory, the re-
sidual error and precision of the predicted value changes 
with variation of geographical positions, seasons and 
solar activity levels. The residual error of the prediction 
in autumn is large and the precision is low, which is re-
lated to the solar activity level. The residual error in 
low-latitude areas (Sanya Station) is larger than that in 
middle-latitude areas, which may be caused by the fact 
that China’s low-latitude ionospheric observation stations 
are near the ionospheric equatorial anomaly hump where 
the ionospheric variation is severe. In general, the effect 
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Table 2. The (avg) of the predicted value in different seasons from stations / MHz. 

One day in advance forecast Two days in advance forecast 
Station Name 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

MH 0.39 0.24 0.43 0.41 1.52 1.47 2.05 1.93 

BJ 0.13 0.20 0.41 0.33 1.68 1.51 2.15 1.83 

WH 0.62 0.53 0.66 0.61 1.89 1.93 2.70 2.22 

SY 0.76 0.87 0.94 0.82 2.06 2.28 2.82 2.47 

 
Table 3. The predicted value precision  in different seasons from stations / %. 

One day in advance forecast Two days in advance forecast 
Station Name 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

MH 96.2 94.5 91.2 95.3 83.1 75.3 72.1 77.4 

BJ 97.4 97.9 94.3 96.9 84.4 78.9 74.7 80.2 

WH 92.3 93.7 91.5 91.2 75.3 81.1 73.9 74.6 

SY 91.6 90.9 90.6 93.7 72.1 73.6 70.7 71.2 

 
of prediction 1 day in advance is better than the effect of 
prediction 2 days in advance. 

5. Conclusions 

By analysis of foF2 historical data from multiple iono-
spheric observation stations, grey theory is applied to 
short-term prediction, grey range information entropy is 
adopted to determine the optimum grey value of N, 
GM(1,1) prediction model is constructed, and the actu-
ally observed data in 2009 are used for test. It can be 
known by analyzing the predicted result that the predic-
tion precision in middle-latitude areas is higher than that 
in low-latitude areas, and when the solar activity is rela-
tively fierce, the prediction precision decreases. This 
method is simple, practical, feasible, and equipped with 
prediction precision, so it has some certain value of 
theoretical direction and engineering application for later 
studies on ionospheric prediction. 
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