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Abstract: Understanding the maximum skin dose is important for avoiding tissue reactions in cerebral
angiography. In this study, we devised a method for using digital imaging and communication
in medicine—radiation dose structured report (DICOM-RDSR) data to accurately estimate the
maximum skin dose from the total air kerma at the patient entrance reference point (Total Ka,r).
Using a test data set (n = 50), we defined the mean ratio of the maximum skin dose obtained
from measurements with radio-photoluminescence glass dosimeters (RPLGDs) to the Total Ka,r as
the conversion factor, CFKa,constant, and compared the accuracy of the estimated maximum skin
dose obtained from multiplying Total Ka,r by CFKa,constant (Estimation Model 1) with that of the
estimated maximum skin dose obtained from multiplying Total Ka,r by the functional conversion
factor CFKa,function (Estimation Model 2). Estimation Model 2, which uses the quadratic function
for the ratio of the fluoroscopy Ka,r to the Total Ka,r (Ka,r ratio), provided an estimated maximum
skin dose closer to that obtained from direct measurements with RPLGDs than compared with that
determined using Estimation Model 1. The same results were obtained for the validation data set
(n = 50). It was suggested the quadratic function for the Ka,r ratio provides a more accurate estimate
of the maximum skin dose in real time.

Keywords: DICOM-RDSR; maximum skin dose; air kerma at the patient entrance reference point;
radio-photoluminescence glass dosimeter; cerebral angiography; neurointerventional radiology

1. Introduction

The advances in interventional radiology (IVR) technology in recent years have re-
sulted in an increased number of patients undergoing lengthy procedures, and the increased
radiation exposure of patients is becoming a great concern. Although neurointerventional
radiology (NIR) has a number of practical benefits for patients, including being less physi-
cally invasive than surgical treatment and requiring a shorter time in hospital, there have
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been numerous reported cases of tissue reactions (deterministic effects), such as hair loss,
under increased radiation exposure doses [1–5].

The most important factor in managing patient radiation exposure dose is to ascertain
the maximum skin dose (Dskin,max) during an IVR procedure [6], and assessing the Dskin,max
in real time is important to avoid damaging the patient’s skin [7]. The reported methods
for measuring doses in real time include measuring the dose at the crystalline lens of the
eye using a metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeter [8] and
attaching up to four photoluminescence sensors (of non-toxic phosphor) to the patient’s
back to measure the skin dose [9]. Because both methods show up on X-ray fluoroscopy
and involve a limited number of measurement sensors, these sensors must not only be
placed at locations where they do not interfere with X-ray fluoroscopy but also require
the location of the maximum dose to be predicted in advance. Both methods also involve
wired measurements, and their value for estimating Dskin,max is limited. Wireless dosimeter
systems utilizing plastic scintillators have recently been developed [8,10,11]. Because these
systems are not made of metal, they do not show up using X-ray fluoroscopy, and their
absence of cables increases their convenience. If the number of points that can be mea-
sured simultaneously were increased, this method would become more widespread [10].
A method of mapping the exposure dose on a diagram of the human body using the
biplane dose tracking system (Biplane-DTS), developed by the angiography device manu-
facturer Canon Medical Systems, Inc. (formerly Toshiba Medical Systems, Co.), was also
reported [12]. However, although it is extremely useful to be able to visualize the dose in
real time, the device-specific nature of this system means that it can only be used in limited
situations. A method for estimating the dose on the patient’s body surface by performing a
real-time Monte Carlo simulation using a high-speed graphics processing unit (GPU) has
also been reported [13], but this system can also only currently be used in a specific facility.

When considering alternative means of direct Dskin, max measurements in real time,
the correlation between the indirect measurement value, the air kerma at the patient
entrance reference point (Ka,r) displayed on the device, and the directly measured Dskin, max
has been widely discussed [14–20]. For directly measuring Dskin,max, methods using
thermoluminescent dosemeters (TLDs) [14,15,20] and Gafchromic film [15–20] have been
reported. It was shown that the correlation between Ka,r and the directly measured
Dskin,max is high, and if the Ka,r values are measured accurately, Dskin,max can be sufficiently
predicted by indirect measurement through Ka,r. We previously estimated the Dskin,max for
patients undergoing NIR using a RADIREC® system (Chiyoda Technol Corporation, Tokyo,
Japan) (Scheme 1a) [3,21–25]. However, the greatest disadvantages of using the RADIREC
system, a passive dosimeter system with 64 radio-photoluminescence glass dosimeters
(RPLGDs) (GD-302M, Chiyoda Technol Corporation, Tokyo, Japan), for measuring the dose
in a single patient are the time and effort required to obtain readouts from the RPLGDs,
which make it impracticable to ascertain the Dskin,max in real time during NIR and to take
measures at the right time to avoid damaging patient skin. As an alternative method, we
analyzed the Dskin,max measured by the RADIREC system (Dskin,max,RPLGD) and the total
air kerma at the patient entrance reference point (Total Ka,r) in the same patient among an
appropriate number of patients (approximately 50). We used the ratio of the Dskin,max,RPLGD
and the Total Ka,r (Dskin,max,RPLGD/Total Ka,r) as the Total Ka,r to the Dskin,max,Ka conversion
factor (CFKa,constant) (Scheme 1b) [21–25]. Using this CFKa,constant enabled the Dskin,max
(Dskin,max,Ka) to be estimated from the Total Ka,r in real time during procedures, thereby
enabling the operator to be warned when the dose approaches the thresholds for skin
reddening and hair loss at 2 and 3 Gy, respectively.
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Scheme 1. Schema of the methods used for estimating the maximum skin dose (Dskin,max) in neuro-
interventional radiology (NIR) patients. (a) Direct estimation method using radio-photolumines-
cence glass dosimeters (RPLGDs) in the RADIREC® system (Dskin,max,RPLGD). Methods for indirectly 
estimating the maximum skin dose from the Total Ka,r displayed by the angiography system 
(Dskin,max,Ka): (b) Estimation Model 1, applying a constant as the conversion factor (CFKa,constant) and 
(c) Estimation Model 2, applying an individual conversion factor obtained by means of a function 
(CFKa,function). 

The Total Ka,r value must be recorded in a Digital Imaging and Communication in 
Medicine—Radiation Dose Structured Report (DICOM-RDSR) (Table 1) [26]. As this value 
is constantly displayed on the angiography monitor during procedures, setting the 
CFKa,constant before commencing the procedure would make any subsequent estimates of 
the Dskin,max,Ka in real time simpler and more convenient. However, because the irradiation 
angle during the procedure varies markedly between patients, the value of Dskin,max/Total 
Ka,r also varies markedly, and converting Total Ka,r to Dskin,max,Ka using a single fixed value 
(CFKa,constant), as in Estimation Model 1 (Scheme 1b), naturally generates large errors. There-
fore, we developed a technique to convert Dskin,max,Ka by applying a conversion factor cor-
rected in real time using DICOM-RDSR data for the individual patient concerned (CFKa,func-

tion), as in Estimation Model 2 (Scheme 1c).

Scheme 1. Schema of the methods used for estimating the maximum skin dose (Dskin,max) in neuroin-
terventional radiology (NIR) patients. (a) Direct estimation method using radio-photoluminescence
glass dosimeters (RPLGDs) in the RADIREC® system (Dskin,max,RPLGD). Methods for indirectly
estimating the maximum skin dose from the Total Ka,r displayed by the angiography system
(Dskin,max,Ka): (b) Estimation Model 1, applying a constant as the conversion factor (CFKa,constant) and
(c) Estimation Model 2, applying an individual conversion factor obtained by means of a function
(CFKa,function).

The Total Ka,r value must be recorded in a Digital Imaging and Communication
in Medicine—Radiation Dose Structured Report (DICOM-RDSR) (Table 1) [26]. As this
value is constantly displayed on the angiography monitor during procedures, setting the
CFKa,constant before commencing the procedure would make any subsequent estimates of
the Dskin,max,Ka in real time simpler and more convenient. However, because the irradiation
angle during the procedure varies markedly between patients, the value of Dskin,max/Total
Ka,r also varies markedly, and converting Total Ka,r to Dskin,max,Ka using a single fixed
value (CFKa,constant), as in Estimation Model 1 (Scheme 1b), naturally generates large errors.
Therefore, we developed a technique to convert Dskin,max,Ka by applying a conversion
factor corrected in real time using DICOM-RDSR data for the individual patient concerned
(CFKa,function), as in Estimation Model 2 (Scheme 1c).
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Table 1. Example of a DICOM—Radiation Dose Structured Report (DICOM-RDSR) at our hospital.

Acquisition
No.

No. of
Frames

Fluoroscopy
/Exposure

LAO
/RAO

(Degree)

CAUD
/CRAN

(Degree)

Tube
Voltage

(kV)

Tube
Current

(mA)

Pulse
Width
(ms)

SID
(mm)

Ka,r
(mGy)

Collimated
Field
Size
(m2)

Pulse
Rate

(Pulse/s)

Fluoroscopy
Time

(s)

1 819 Fluoroscopy LAO 0 CRAN 0 76 6.9 66.7 976 7.71 0.023 15 54.6
2 28 Fluoroscopy RAO 30 CRAN 0 82 7.9 66.7 1041 0.34 0.020 15 1.9
3 11 Exposure RAO 30 CRAN 0 71 654.0 41.4 1005 37.39 0.021 NA −
4 195 Fluoroscopy RAO 30 CRAN 0 82 7.9 66.7 1005 2.63 0.021 15 13.0
5 1938 Fluoroscopy RAO 30 CRAN 0 82 7.9 66.7 1005 26.04 0.021 15 129.2
6 43 Fluoroscopy LAO 0 CRAN 20 84 8.2 66.7 950 0.68 0.018 15 2.9
7 104 Fluoroscopy LAO 0 CRAN 20 83 8.1 66.7 919 1.54 0.019 15 6.9
8 14 Fluoroscopy LAO 0 CRAN 25 83 8.1 66.7 904 0.19 0.020 15 1.0
9 28 Exposure LAO 0 CRAN 25 70 642.0 39.0 904 86.06 0.020 NA −
10 329 Fluoroscopy LAO 0 CRAN 0 78 7.2 66.7 957 3.56 0.018 15 21.9
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·

61 30 Fluoroscopy LAO 0 CRAN 0 76 6.7 66.7 1016 3.02 0.021 15 2.0
62 767 Fluoroscopy LAO 0 CRAN 0 81 7.8 66.7 1016 9.89 0.021 15 51.1

DICOM: Digital Imaging and Communication in Medicine; LAO: left anterior oblique; RAO: right anterior oblique; CAUD: caudal; CRAN: cranial; SID: source image receptor distance; Ka,r: air kerma at the
patient entrance reference point.
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In this study, to optimize the process for estimating Dskin,max,Ka to establish a method
that would bring the value of Dskin,max,Ka estimated indirectly from the Total Ka,r value
closer to the more directly estimated Dskin,max,RPLGD value, we first analyzed the factors
giving rise to variation in the Dskin,max,RPLGD/Total Ka,r ratio and then devised a new
method for correcting for this variation. Finally, we validated the efficacy of this new
correction method using a separately prepared validation data set. Our objective was
to improve the accuracy with which the Dskin,max for patients undergoing NIR can be
estimated from the Total Ka,r to help prevent skin damage by providing the operator with
real-time Dskin,max measurements during NIR procedures. This method may provide a new
means of utilizing DICOM-RDSR data.

2. Materials and Methods
2.1. Data Sets

The test data set comprised 50 patients who underwent cerebral angiography in our
hospital between October 2015 and July 2016 (diagnostic cerebral angiography: 43 cases;
NIR: 7 cases), and the validation data set comprised 50 patients who underwent cerebral
angiography in our hospital between August 2016 and September 2017 (diagnostic cerebral
angiography: 43 cases; NIR: 7 cases) (Table 2).

Table 2. Data set characteristics.

Test Data Set Validation Data Set p-Value *

Period of investigation October 2015–July 2016 August 2016–September 2017
Number of cases (NIR) 50 (7) 50 (7)

Men 20 (40%) 24 (48%)
Women 30 (60%) 26 (52%)

Age, y [range] 57.5 ± 13.9 [30–78] 62.8 ± 14.4 [33–88] N.S.
BMI, kg·m−2 [range] 22.5 ± 3.1 [16.8–32.4] −23.5 ± 3.8 [16.9–33.4] N.S.
Dskin,max,RPLGD, mGy 552.4 ± 250.3 457.9 ± 353.6 N.S.

Total Ka,r, mGy 951.2 ± 398.2 807.8 ± 548.5 N.S.
Fluoroscopy Ka,r, mGy 117.3 ± 151.8 124.5 ± 185.5 N.S.

Exposure Ka,r, mGy 833.9 ± 322.7 683.3 ± 397.5 p = 0.04
Fluoroscopy Time, min 11.9 ± 10.1 12.7 ± 14.4 N.S.

Number of DSA 12.7 ± 5.4 11.3 ± 8.8 N.S.
Number of Frames 322.8 ± 100.5 297.8 ± 155.9 N.S.

All data are expressed as the mean ± standard deviation; * Welch’s t-test; N.S.: not significant; NIR: neurointerventional radiology; BMI:
body mass index; Dskin,max,RPLGD: the maximum absorbed dose to the most heavily irradiated localized region that was obtained using 64
radio-photoluminescence glass dosimeters placed on the surface of the head and neck of the patient (RADIREC® system); Ka,r: air kerma of
the primary X-ray beam measured under specific conditions and expressed as the equivalent value at the patient entrance reference point;
Total Ka,r = Fluoroscopy Ka,r + Exposure Ka,r; DSA: digital subtraction angiography.

2.2. X-ray Equipment

Angiography was performed using a single-plane angiography system (BRANSIST
Safire VC9 Slender, Shimadzu Co., Kyoto, Japan) equipped with a flat-panel detector. The
tube voltage and tube current were adjusted via auto exposure control, and scanning
was conducted at a fluoroscopy pulse rate of 15 pulses/s and an exposure frame rate of
3 frames/s. A 1.5 mm Al + 0.6 mm Cu filter was automatically selected and applied during
fluoroscopy, and a 1.0 mm Al filter was applied during exposure.

2.3. Dosimetry of Skin Dose for Patients Who Undergo NIR Procedures

The skin dose (Dskin,RPLGD) from the patient’s head to their neck was measured
using the RADIREC® system [3,21–25]. This system consists of 64 RPLGDs (GD-302M,
Chiyoda Technol, Corporation, Tokyo, Japan), which are passive dosimeters, placed on
a special cap that covers the entire circumference of the head. The maximum skin dose
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(Dskin,max,RPLGD) can thus be obtained from the dose distribution and measurements at
these 64 points [24,25].

2.4. RPLGD X-Ray Energy Calibration

Firstly, to obtain the energy responses of the RPLGDs under the fluoroscopy settings,
the X-ray tube voltage was increased from 60 to 120 kVp in 10 kVp increments, and the X-ray
effective energy at each tube voltage was measured using the aluminum half-value layer
method [27] with an ionization chamber dosimeter (AE-1322 exposure ratemeter, Applied
Engineering Inc., Kiyose, Tokyo, Japan), which is calibrated annually by the Japan Quality
Assurance Organization (JQA), Japan’s secondary standard body. Secondly, under the same
fluoroscopy settings, the ionization chamber and the five RPLGDs were simultaneously
exposed to X-rays in free air at tube voltage values from 60 to 120 kVp in 10 kVp increments.
Thirdly, under the exposure settings, simultaneous irradiation of the ionization chamber
and the five RPLGDs was performed using the same method as described above. Finally,
the RPLGD energy compensation factors (CFRPLGD) for the X-ray effective energies were
calculated by dividing the ionization chamber dosimeter measurements by the RPLGD
readings, and the CFRPLGD (y) values were fitted to a quadratic equation (Equation (1)) for
the X-ray effective energy [keV] (x) (Figure 1):

y = 0.0002x2 − 0.0147x + 0.5270 (1)
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Figure 1. Relationship between X-ray effective energy and the radio-photoluminescence glass
dosimeter (RPLGD) energy compensation factor (CFRPLGD). The symbols • and × show the data
obtained under simultaneous X-ray exposure to the ionization chamber and RPLGDs under settings
of fluoroscopy and exposure, respectively. CFRPLGD (y) was fitted to the following quadratic equation
for X-ray effective energy (x): y = 0.0002x2 − 0.0147x + 0.5270 (R = 0.999) (solid line).

2.5. Direct Estimation Method: Estimation of Dskin,max,RPLGD from RPLGD Measurements

In the cerebral angiography of actual patients, the tube voltage changes constantly
in response to factors including the objective and procedure, scanning site, and patient’s
position. Hence, the X-ray effective energy is also constantly changing. For this reason, we
first calculated the CFRPLGD from Equation (1) using the representative effective energies
for fluoroscopy and the exposure obtained from the individual DICOM-RDSR data for
the 50 patients in the test data set; then, we calculated the weighted calibration factor
(CFRPLGD,weighted) from the fluoroscopy Ka,r and the exposure Ka,r. We next defined the
Total CFRPLGD,weighted as the mean CFRPLGD,weighted for all 50 patients and converted the
RPLGD readout values to Dskin,RPLGD according to Equation (2) below (Scheme 1a):

Dskin,RPLGD = Total CFRPLGD,weighted × RPLGD readout value (2)
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While using the RADIREC system, we assumed that the maximum value of all
Dskin,RPLGD values at the 64 dose monitoring points were Dskin,max,RPLGD.

2.6. Indirect Estimation Method: Estimation of Dskin,max from Total Ka,r by Applying an Arbitrary
Constant as a Conversion Factor (CFKa,const) (Estimation Model 1)

The mean value of the ratio between Dskin,max,RPLGD and Total Ka,r (Dskin,max,RPLGD/Total
Ka,r) for the 50 patients in the test data set was defined as CFKa,constant, and Dskin,max,Ka was
estimated using Equation (3) below (Scheme 1b):

Dskin,max,Ka = CFKa,constant × Total Ka,r (3)

2.7. Indirect Estimation Method: Estimation of Dskin,max from Total Ka,r by Applying an Arbitrary
Function as a Conversion Factor (CFKa,function) (Estimation Model 2)

We analyzed the associations between the Dskin,max,RPLGD/Total Ka,r and the Total
Ka,r, Fluoroscopy Ka,r, Exposure Ka,r, Fluoroscopy Time, Number of DSA, Number of
Frames, and the Fluoroscopy Ka,r/Total Ka,r (Ka,r ratio) in the various combinations from
the DICOM-RDSR data recorded for the 50 patients in the test data set. In light of the results,
we used the Total Ka,r to Dskin,max,Ka conversion factor (CFKa,function), an arbitrary function
that minimizes the error between the estimated Dskin,max,Ka and the Dskin,max,RPLGD, to
estimate the Dskin,max,Ka for each individual patient according to Equation (4) (Scheme 1c):

Dskin,max,Ka = CFKa,function × Total Ka,r (4)

2.8. Comparison of the Accuracy of the Estimation of Dskin,max,Ka under Estimation Models 1 and 2

Using the 50 patient test data set, we carried out a regression analysis between the
values of Dskin,max,Ka estimated indirectly using the two maximum skin dose estimation
models above (Estimation Models 1 and 2) and the value of Dskin,max,RPLGD estimated
directly from RPLGD readouts. We calculated the root mean squared error (RMSE),
mean absolute error (MAE), and coefficient of determination (R2) between Dskin,max,Ka
and Dskin,max,RPLGD, and compared the goodness of fit of the two estimation models.

2.9. Validation of the Accuracy of Estimation Models 1 and 2 Using the Validation Data Set

Using the 50 patient validation data set, after first determining that there was little
variation in CFRPLGD,weighted, we determined the Total CFRPLGD,weighted. We then compared
the goodness of fit of the two maximum skin dose estimation models (Estimation Models 1
and 2) via the same method as that used for the test data set.

2.10. Statistical Analysis

SPSS (Version 25. SPSS Inc., Chicago, IL, USA) was used for statistical analyses.
Differences between the mean values of the test data set and the validation data set were
tested for significance using Welch’s t-test, with p < 0.05 regarded as indicating significance.

2.11. Ethical Approval

This study was approved by the Ethics Committee of Shinkomonji Hospital (Approval
No. 27004, 10 June 2015).

3. Results
3.1. Direct Estimation of Dskin,max,RPLGD

Table 3 shows the values of CFRPLGD,weighted, the RPLGD compensation factors
weighted by the Ka,r for fluoroscopy, and the exposure obtained from the DICOM-RDSR
data for the 50 patients in the test data set. CFRPLGD,weighted exhibited little variation at
0.272 ± 0.004 (mean ± standard deviation; range: 0.267−0.284), suggesting that, in practical
terms, the effect of patient differences on CFRPLGD,weighted is negligible, so a value of 0.272
for Total CFRPLGD,weighted was adopted. The highest of the Dskin,RPLGD values at the 64 sites
calculated for each patient was used as Dskin,max,RPLGD.
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Table 3. Radio-photoluminescence glass dosimeter (RPLGD) energy compensation factors weighted by the ratio of the dose
at the patient entrance reference point (Ka,r ratio) (test data set: n = 50).

Case No.

Fluoroscopy Exposure Ka,r Ratio

CFRPLGD,

weighted
Tube

Voltage *
(kV)

Effective
Energy **

(keV)

CFRPLGD
***
(a)

Tube
Voltage *

(kV)

Effective
Energy **

(keV)

CFRPLGD
***
(b)

Fluoroscopy
Ka,r/Total

Ka,r
(c)

Exposure
Ka,r/Total

Ka,r
(d)

1 79.3 51.8 0.302 69.4 29.1 0.269 0.074 0.926 0.271
2 74.9 50.5 0.295 68.6 28.9 0.269 0.074 0.926 0.271
3 83.8 53.1 0.311 71.0 29.4 0.268 0.278 0.722 0.280
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

48 73.2 50.0 0.292 68.0 28.8 0.270 0.087 0.913 0.272
49 74.8 50.5 0.295 68.3 28.8 0.270 0.139 0.861 0.273
50 74.3 50.3 0.294 68.4 28.8 0.269 0.046 0.954 0.271

Mean 76.8 51.1 0.298 70.0 29.2 0.268 0.112 0.888 0.272
S.D. 3.4 1.0 0.006 2.0 0.4 0.001 0.091 0.091 0.004

Range 69.7—87.3 49.0—54.2 0.287—
0.318 67.5—76.2 28.7—30.5 0.265—

0.270
0.034—
0.378

0.622—
0.966

0.267—
0.284

CFRPLGD: RPLGD energy compensation factor; RPLGD: radio-photoluminescence glass dosimeter; CFRPLGD,weighted: Ka,r ratio weighted
RPLGD energy compensation factor obtained by the equation as follows: CFRPLGD,weighted = (a) × (c) + (b) × (d); * Mean tube voltage for
each patient derived from DICOM-RDSR; ** Effective energy value for the mean tube voltage for each patient. Calculated by interpolation
from the NIST Standard Reference Database 126 [27] data; *** Calculated from the CFRPLGD X-ray effective energy function (Equation (1))
shown in Figure 1.

3.2. Indirect Estimation of Dskin,max,Ka Using Estimation Model 1

The Dskin,max,RPLGD/Total Ka,r for the 50 patients in the test data set was 0.575 ± 0.075
(mean ± standard deviation; range: 0.425−0.795), so a value of 0.575 for CFKa,constant was
used to estimate Dskin,max,Ka using Equation (3).

3.3. Indirect Estimation of Dskin,max,Ka Using Estimation Model 2

A linear regression analysis of the 50 patients in the test data set did not show any
significant correlation between Total Ka,r, Fluoroscopy Ka,r, Exposure Ka,r, Fluoroscopy
Time, Number of DSA, Number of Frames, or Fluoroscopy Ka,r/Total Ka,r (Ka,r ratio)
and Dskin,max,RPLGD/Total Ka,r (Figure 2). However, quadratic regression analysis identi-
fied a moderate correlation (R = 0.520) for Fluoroscopy Ka,r/Total Ka,r (Ka,r ratio) alone
(Figure 2d), so Equation (5) was used as the CFKa,function:

CFKa,function = 5.0589 × (Fluoroscopy Ka,r/Total Ka,r)2 − 1.8584 × (Fluoroscopy Ka,r/Total Ka,r) + 0.6788 (5)

Dskin,max,Ka was estimated using Equations (4) and (5).

3.4. Comparison of the Accuracy of Dskin,max,Ka Estimated Using Estimation Models 1 and 2

Using the 50 patient test data set, we analyzed the correlations between the values
of Dskin,max,Ka estimated using Estimation Models 1 and 2 and Dskin,max,RPLGD. We found
that the correlation was high for both estimation methods (Model 1, R = 0.958; Model 2,
R = 0.970) but that Estimation Model 2, which used CFKa,function as the conversion factor
for individual patients, exhibited a better goodness of fit than Estimation Model 1 in terms
of RMSE, MAE, and R2, demonstrating the superiority of Estimation Model 2 (Figure 3).
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Figure 3. Investigation of the accuracy of the two indirect methods for estimating Dskin,max,Ka using the test data set (n = 50).
(a) Correlation between the value of Dskin,max,Ka indirectly estimated using an arbitrary constant CFKa,constant (Estimation
Model 1) and Dskin,max,RPLGD directly estimated using radio-photoluminescence glass dosimeters (RPLGDs); (b) correlation
between the value of Dskin,max,Ka indirectly estimated using an arbitrary quadratic function CFKa,function (Estimation Model
2) and Dskin,max,RPLGD directly estimated using RPLGDs. The broken lines indicate 95% predictive intervals.

3.5. Validation of the Accuracy of Estimates Using Estimation Models 1 and 2 under the Validation
Data Set

In the 50 patient validation data set, CFRPLGD,weighted exhibited little variation at
0.273 ± 0.004 (mean ± standard deviation; range: 0.270−0.287) (Table 4), so a value of
0.273 for Total CFRPLGD,weighted was adopted. Dskin,max,RPLGD/Total Ka,r was 0.562 ± 0.089
(mean ± standard deviation; range: 0.403−0.850), so a value of 0.562 was used for CFKa,constant.
As in the test data set, linear regression did not show any significant correlation between
Total Ka,r, Fluoroscopy Ka,r, Exposure Ka,r, Fluoroscopy Time, Number of DSA, Number of
Frames, or Fluoroscopy Ka,r/Total Ka,r (Ka,r ratio), or Dskin,max,RPLGD/Total Ka,r (Figure 4).
However, quadratic regression identified a moderate correlation (R = 0.609) for Fluoroscopy
Ka,r/Total Ka,r (Ka,r ratio) (Figure 4d), so the quadratic equation shown as Equation (6) was
used as the CFKa,function:

CFKa,function = 4.6301 × (Fluoroscopy Ka,r/Total Ka,r)2 − 1.5285 × (Fluoroscopy Ka,r/Total Ka,r) + 0.6430 (6)

Analysis of the correlations between the values of Dskin,max,Ka estimated by Estimation
Models 1 and 2 using these values and Dskin,max,RPLGD showed that although the corre-
lations were high for both estimation methods (Model 1, R = 0.951; Model 2, R = 0.984),
Estimation Model 2, which used CFKa,function as the conversion factor for individual pa-
tients, exhibited a better goodness of fit than Estimation Model 1 in terms of the RMSE,
MAE, and R2, demonstrating the superiority of Estimation Model 2 (Figure 5).
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Table 4. RPLGD energy compensation factors weighted by the Ka,r ratio (validation data set: n = 50).

Case
No.

Fluoroscopy Exposure Ka,r Ratio

CFRPLGD,

weighted
Tube

Voltage *
(kV)

Effective
Energy **

(keV)

CFRPLGD
***
(a)

Tube
Voltage *

(kV)

Effective
Energy **

(keV)

CFRPLGD
***
(b)

Fluoroscopy
Ka,r/Total

Ka,r
(c)

Exposure
Ka,r/Total

Ka,r
(d)

51 76.7 51.0 0.298 69.3 29.0 0.269 0.055 0.945 0.270
52 80.0 52.0 0.303 70.0 29.2 0.268 0.075 0.925 0.271
53 77.6 51.3 0.299 68.8 28.9 0.269 0.136 0.864 0.273
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

98 73.1 50.0 0.292 67.9 28.7 0.270 0.120 0.880 0.272
99 74.8 50.5 0.295 70.1 29.2 0.268 0.097 0.903 0.271

100 75.8 50.7 0.296 69.2 29.0 0.269 0.292 0.708 0.277

Mean 77.3 51.2 0.299 69.3 29.0 0.269 0.124 0.876 0.273
S.D. 2.9 0.8 0.005 1.5 0.3 0.001 0.090 0.090 0.004

Range 73.1—85.9 50.0—53.7 0.292—0.315 67.7—78.4 28.7—31.0 0.264—0.270 0.039—0.416 0.584—0.961 0.270—0.287

CFRPLGD: RPLGD energy compensation factor; CFRPLGD,weighted: Ka,r ratio weighted RPLGD energy compensation factor obtained by the
equation as follows: CFRPLGD,weighted = (a) × (c) + (b) × (d); * Mean tube voltage for each patient derived from DICOM-RDSR; ** Effective
energy value for the mean tube voltage for each patient. Calculated by interpolation from the NIST Standard Reference Database 126 [27]
data; *** Calculated from the CFRPLGD X-ray effective energy function (Equation (1)) shown in Figure 1.Diagnostics 2021, 11, 14 12 of 17 
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Figure 4. Analysis of the factors affecting Dskin,max,RPLGD /Total Ka,r using the validation data set (n = 50). The broken
lines indicate linear regression, and the solid lines indicate quadratic regression. We analyzed the correlations between
Dskin,max,RPLGD/Total Ka,r and the following Digital Imaging and Communication in Medicine—Radiation Dose Structured
Report parameters: (a) Total Ka,r; (b) Fluoroscopy Ka,r; (c) Exposure Ka,r; (d) Fluoroscopy Ka,r/Total Ka,r (Ka,r ratio);
(e) Fluoroscopy Time; (f) Number of DSA; and (g) Number of frames.
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4. Discussion

Two factors are important for reducing the occurrence of radiation damage in patients
undergoing IVR: minimizing stochastic effects, such as carcinogenesis and genetic effects,
and avoiding tissue reactions, such as hair loss and skin injury [6].

One method for reducing the stochastic effects of IVR is to use the diagnostic reference
level (DRL) to keep the radiation dose administered to the patient “as low as reasonably
achievable (ALARA)” while guaranteeing the image quality required for diagnostic imag-
ing [28–30]. Countries belonging to the European Union (EU) are required to establish
DRLs [31], and individual countries have adopted DRLs appropriate to their situations.
In the United States, organizations including the American College of Radiology (ACR),
the American Association of Physicists in Medicine (AAPM), and the National Council on
Radiation Protection and Measurements (NCRP) require that both image quality and dose
be optimized using both the DRL, defined as the 75th percentile of the dose distribution of
a number of representative facilities, and the achievable dose, defined as the 50th percentile,
although not all states have adopted this approach [32]. The first Japanese DRLs were
issued on 7 June 2015 by the Japan Network for Research and Information on Medical
Exposure (J-RIME) [33], and these DRLs were revised five years later on 3 July 2020. With
respect to NIR, the revised version includes the DRL values for the Ka,r and air kerma
area product (PKA) for the imaging of six major patient groups for the three purposes
of preoperative diagnostic angiography, postoperative diagnostic angiography, and en-
dovascular treatment [34]. However, the establishment of DRLs and dose optimization by
individual institutions are not directly helpful for avoiding tissue reactions. Rather, what
is important is to be aware of the threshold levels in advance (reddening: 2 Gy; hair loss:
3 Gy), monitoring the Dskin,max in real time during NIR procedures, and informing the
operator, as required, if this value approaches the threshold value [6].

A wide range of data is acquired for DICOM-RDSR, including the tube current and
voltage, scanning data (such as exposure time and number of exposures), distance from
the X-ray focal point to the detector, open area of the irradiation aperture, entrance angle,
area dose, and patient entrance reference point dose. Because these data are acquired
automatically for each fluoroscopy and exposure event, they can be used to manage medical
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radiation exposure for patients undergoing IVR [35–41], and case studies of patient dose
monitoring in multiple institutions have been reported [35,36,41]. In particular, Total Ka,r
is constantly displayed on the angiography system monitor during treatment procedures,
and its recording in DICOM-RDSR is also obligatory [26], meaning that it can be used
to estimate the Dskin,max simply and in real time at every medical facility where NIR is
performed. In NIR, however, because the direction of X-ray irradiation and the extent of
irradiation are constantly changing, the accurate estimation of Dskin,max is not necessarily
simple, and the discrepancy between the values of Total Ka,r and Dskin,max mean that each
individual institution should use its own conversion coefficient.

We previously analyzed Dskin,max,RPLGD using the RADIREC system and estimated
Dskin,max,Ka intraoperatively in real time by multiplying the Total Ka,r by the mean Dskin,max,

RPLGD/Total Ka,r ratio as CFKa,constant (Schema 1b). However, Total Ka,r is the sum of all
the X-ray entrance angles, and as the X-ray entrance angles are completely different for
each patient, the Dskin,max,Ka is often larger or smaller than the actual Dskin,max,RPLGD.
Theoretically, if the X-ray entrance angle does not change at all during the procedure, the
value of Dskin,max,RPLGD/Total Ka,r increases and approaches 1. Conversely, if the X-ray
entrance angle varies widely, the ratio will be lower. However, to our best knowledge,
no index that provides an appropriate indication of variation in the X-ray entrance angle
has yet been reported, and ours is the first study to demonstrate that a quadratic equation
for the Ka,r ratio can adequately explain the variation in the value of Dskin,max,RPLGD/
Total Ka,r.

Figure 6 shows the residue plots for directly estimated Dskin,max,RPLGD and indirectly
estimated Dskin,max,Ka. Applying the CFKa,function to the Ka,r ratio quadratic equations
(see Equation (5) for the test data set and Equation (6) for the validation data set) and
estimating the individual Dskin,max,Ka for each patient revealed a strong corrective effect
in the high-dose region of the validation data set and a weak corrective effect in the
low-dose regions of the test data set and the validation data set (Figure 6). This may
be because radiation exposure is high in therapeutic NIR procedures, such as cerebral
aneurysm coil embolization, in which the Ka,r ratio is high because fluoroscopy is conducted
over long periods from the same X-ray entrance angle, and the Dskin,max,RPLGD/Total
Ka,r also increases (Figure 4d), and application of a high CFKa,function value can be used
to correct Dskin,max,Ka appropriately. Conversely, the procedure that most commonly
involves a low radiation dose is diagnostic cerebral angiography, a standard procedure in
which most of the radiation dose comes from exposure at the same X-ray entrance angle
(mainly via posterior–anterior and/or left–right projection), resulting in a low Ka,r ratio
and increasing the Dskin,max,RPLGD/Total Ka,r (Figures 2d and 4d). As in the case of a high
radiation dose, a high CFKa,function value can also be applied for appropriate correction
of Dskin,max,Ka. Applying CFKa,function weighted by the Ka,r ratio therefore facilitates more
accurate estimation of Dskin,max,Ka.

In this study, our objective was to construct a CFKa,function using the Fluoroscopy Ka,r
and the Total Ka,r data recorded in the DICOM-RDSR, but as X-ray entrance angle data
are also recorded for each fluoroscopy and exposure event, analysis of these data may
also enable us to develop an index of the degree of variation in the X-ray entrance angle,
potentially further increasing the accuracy of estimating Dskin,max,Ka. As DICOM-RDSR is
currently obligatory for all angiography systems both in Japan and overseas, it is a tool that
is readily available in most institutions. Further studies should be conducted to explore
other potential uses of DICOM-RDSR to reduce patient radiation exposure.
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rently obligatory for all angiography systems both in Japan and overseas, it is a tool that 
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other potential uses of DICOM-RDSR to reduce patient radiation exposure. 
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5. Conclusions

In this study, it was suggested that multiplying a conversion factor using the quadratic
function for the ratio of Fluoroscopy Ka,r/Total Ka,r for each patient by the Total Ka,r
provides a more accurate estimate than multiplying with a constant conversion factor
during cerebral angiography, including NIR procedures, in real time.
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