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Abstract: Model quality assessment (MQA), which selects near-native structures from structure
models, is an important process in protein tertiary structure prediction. The three-dimensional
convolution neural network (3DCNN) was applied to the task, but the performance was comparable
to existing methods because it used only atom-type features as the input. Thus, we added sequence
profile-based features, which are also used in other methods, to improve the performance. We
developed a single-model MQA method for protein structures based on 3DCNN using sequence
profile-based features, namely, P3CMQA. Performance evaluation using a CASP13 dataset showed
that profile-based features improved the assessment performance, and the proposed method was
better than currently available single-model MQA methods, including the previous 3DCNN-based
method. We also implemented a web-interface of the method to make it more user-friendly.

Keywords: model quality assessment (MQA); estimation of model accuracy (EMA); protein structure
prediction; machine learning; deep learning; 3DCNN; CASP

1. Introduction

Protein structure prediction is one of the most important issues in bioinformatics,
and various prediction methods have been developed such as Alphafold [1]. Currently,
there is no best structure prediction method for any target, and thus, the user practically
uses multiple methods to generate structure models. In addition, each method often
generates multiple structure models. Therefore, model quality assessment (MQA), which
estimates the quality of the model structures, is required for selecting a final structure
model. There are two kinds of MQA, single-model and consensus method. The single-
model methods use only one model structure as the input, whereas the consensus methods
need to take a consensus of multiple model structures. The performance of consensus
methods is often higher in a case that many high-quality model structures are available,
such as CASP [2]. However, consensus methods do not perform well with fewer model
structures. Furthermore, the consensus methods use single-model MQA scores for the
features [3]. Therefore, the development of high-performance single-model MQA methods
is important.

To improve the single-model MQA, various methods have been developed. Currently,
one of the best methods is based on the three-dimensional convolutional neural network
(3DCNN) [4,5]. 3DCNN is a derivative of deep neural networks and can handle 3D-
coordinates of protein atoms directly. However, these methods show only comparable
performance to the other existing methods. One of the major problems in the previous
3DCNN-based methods was with their features, which were based on only atom types.
They did not use any features related to evolution, such as sequence profile information.
Various studies have shown the importance of sequence profile information, and the
addition of such information could significantly improve the performance [6,7].
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In this study, we developed a single-model MQA method for protein structures
based on 3DCNN using sequence profile-based features. The proposed method, profile-
based three-dimensional neural network for protein model quality assessment (P3CMQA),
has basically the same neural network architecture as that of a previous 3DCNN-based
method [5] but uses additional features, i.e., sequence profile information, and predicted
local structures from the sequence profiles. Comparison with state-of-the-art methods
showed that P3CMQA performed considerably better than them. P3CMQA is available
both as a web application and a stand-alone application at http://www.cb.cs.titech.ac.jp/
p3cmqa and https://github.com/yutake27/P3CMQA, respectively.

2. Materials and Methods

A 3DCNN-based method by Sato and Ishida (Sato-3DCNN) used only 14 atom types
as the features [5]. In addition to the atom-type features, here, we tried to improve the
performance by adding sequence profile-based features. We used a position-specific
scoring matrix (PSSM) of a residue obtained by PSI-BLAST [8] to incorporate evolutionary
information. We also added predicted local structures from the sequence profiles: predicted
secondary structure (predicted SS) and predicted relative solvent accessibility (predicted
RSA). SS and RSA are predicted by SSpro/ACCpro [9]. The overall workflow is shown in
Figure 1.
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Figure 1. Overall workflow of this work. First, a bounding box is generated for each residue from the coordinate information
of the model structure. Then, 14-dimensional atom-type features are obtained from the model structure. In addition, 20-
dimensional sequence profile features and 4-dimensional local structure features are generated from the sequences. These
features are then input to the three-dimensional convolutional neural network to predict a local score for each residue.
Finally, the local scores are averaged to obtain a global score for the entire model.

2.1. Featurization
2.1.1. Making Residue-Level Bounding Box

We made a residue-level bounding box in the same way as in Sato-3DCNN. The length
of one side of the bounding box is 28Å and the box is divided into 1Å voxels. The axis of
the bounding box is defined by the orthogonal basis calculated from the C-CA vector and
N-CA vector and the cross product of C-CA and N-CA. By fixing the axis, the problem of
rotation need not be considered.

http://www.cb.cs.titech.ac.jp/p3cmqa
http://www.cb.cs.titech.ac.jp/p3cmqa
https://github.com/yutake27/P3CMQA
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2.1.2. Atom-Type Features

In Sato-3DCNN, 14 features corresponding to combinations of atoms and residues
based on Derevyanko-3DCNN [4] were used. The detail of the 14 atom-type features is
shown in Table A1. In this work, we used all 14 features as atom-type features and all these
features are binary indicators for each voxel.

2.1.3. Evolutionary Information

We used the position-specific scoring matrix (PSSM) as evolutionary information. We
generated PSSM using PSI-BLAST [8] against the Uniref90 database (downloaded April
2019) with two iterations. The maximum and minimum values of PSSM in the training
dataset were 13, −13; thus, we normalized PSSM using the following formula.

Normalized PSSM =
PSSM + 13

26

PSSM is a residue-level feature, but we assigned PSSM to all the atoms that made up
the residue.

2.1.4. Predicted Local Structure

We used predicted local structure as a feature, and the actual local structure of the
model structure was not used because it is considered to be observable using 3DCNN.
Predicted secondary structure (SS) and predicted relative solvent accessibility (RSA) were
used as the predicted local structure. SS was predicted from the sequence profile using
SSpro [9]. SSpro predicts SS into three classes; therefore, we use predicted SS in the form of
a three-dimensional one-hot vector. RSA was predicted from the sequence profile using
ACCpro20 [9]. ACCpro20 predicts RSA from 5% to 95%, as a 5% increase; thus, we divided
the predicted RSA by 100 and scaled it from 0 to 0.95. Like PSSM, predicted SS and RSA
are residue-level features, but we assigned them to all atoms.

2.2. 3DCNN Training
2.2.1. Network Architecture

The same network architecture used in Sato-3DCNN, which consists of six convolu-
tional layers and three fully connected layers, was used for the neural network architecture.
To avoid overfitting, the batch normalization [10] was applied after each convolutional layer,
and PReLU [11] was applied as an activation function after the batch normalization. We show
the detail of the network architecture in Table A2. We examined other network architectures
such as residual network [12], but they did not improve performance significantly.

2.2.2. Label and Score Integration

We trained our models by supervised learning. We generated a bounding box for
each residue and trained the model; hence, a label is required, which represents the local
structure quality of each residue. Thus, we used lDDT [13] as a label for each residue,
as with Sato-3DCNN. lDDT is a local structural similarity score that is superposition-free.
It evaluates whether the local atomic environment of the reference structure is preserved in
a protein model.

We trained models by binary classification, as in Sato-3DCNN. Therefore, we set
the threshold to 0.5 and converted lDDT to positive or negative. Sigmoid cross entropy
was used as a loss function. We also tried regression learning, but the predictive perfor-
mance decreased.

As mentioned above, we trained a 3DCNN-model for each residue, and the 3DCNN-
model returned a score for a residue in the prediction. Thus, we needed to integrate the
predicted score of each residue into the score of the entire protein structure model to predict
its quality. The score of the entire protein structure model was calculated as the mean of
the score for each residue, as with Sato-3DCNN.
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In this study, we compared our method to other methods to predict the quality of the
entire protein structure model. We used GDT_TS [14] as a label that represents the quality
of the entire structure model in the evaluation.

2.2.3. Parameters

We used AMSGrad [15] as an optimizer and set the learning rate to 0.001. We used 32
Nvidia Tesla P100 GPUs and performed distributed learning. We set the batch size of each
GPU to 32, and the total batch size was 1024.

2.2.4. Training Process

We trained the model using the architecture, labels, loss function, and optimization
function described above. To avoid overfitting, the average Pearson correlation for each
target of the validation dataset was calculated for each epoch, and the model of the epoch
with the best Pearson correlation was selected. The training of the model took about two
hours for each epoch and was completed within 5 epochs.

2.3. Dataset

For the training dataset, we used the predicted protein model structures and native
structures from CASP7 to CASP10 [16–19]. The total number of protein targets was 434,
and the total number of protein structure models was 116,227. We excluded the protein
targets with fewer than 50 models. Finally, the training dataset included 421 protein targets
and 116,096 protein structure models. We randomly split each protein target into the
training dataset and the validation dataset (8 to 2). In the training dataset, due to a large
number of structure models, we randomly selected 25% models for each protein target. As
a result, we used 23,405 structure models and 4,666,494 residues for training.

For the test dataset, we used CASP12 and CASP13 datasets [2,20]. Each dataset
was divided into stage 1 and stage 2. However, only stage 2, which has 150 structure
models per protein target, was used. The GDT_TS for each structure model was obtained
from the CASP website. In CASP, protein targets for which the best-predicted model had
GDT_TS less than 40 were not considered in the evaluation. Thus, we excluded such
protein targets, and finally, the number of protein targets in CASP12 and CASP13 was 51
and 66, respectively.

In both the training dataset and the test dataset, we used SCWRL4 [21] to optimize the
side-chain conformation. By using SCWRL4, it is possible to evaluate the quality of model
structures that contain only main-chain. The details of both datasets are shown in Table 1.

Table 1. Details of the training dataset and the test dataset.

Dataset Number of Targets Number of Model Structures per Target

Train Train 337 69.5
Validation 85 271.7

Test CASP12 51 149.9
CASP13 66 149.9

2.4. Performance Evaluation

We used the following four measures to evaluate the performance of our method.

1. The average Pearson correlation coefficient for each target
2. The average Spearman correlation coefficient for each target
3. The average GDT_TS loss for each target
4. The average Z-score for each target

Pearson correlation coefficient is calculated from the correlation between the predicted
quality score and the GDT_TS. Spearman correlation coefficient is calculated from the
same data as the Pearson correlation coefficient. GDT_TS loss is the difference between
the GDT_TS of the best model and the GDT_TS of the model with the highest prediction
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score. Therefore, a lower GDT_TS loss represents better performance. Z-score is a standard
score of a selected model, which is the difference between the GDT_TS of a selected model
and the population mean in units of standard deviation. A higher Z-score indicates a
better performance.

3. Results and Discussion
3.1. Training Result for Each Feature

We added evolutionary information and predicted local structural features to improve
the performance of the model. Thus, we evaluated the contribution of each feature using
the validation dataset. To compare the prediction performance of trained 3DCNN-models
using each feature, the average of the Pearson correlation between the predicted global
score and GDT_TS for each target was used because we selected the model with the best
Pearson correlation on the validation dataset during training. We show the results in
Table 2. The model using only atom-type features was the same as Sato-3DCNN except for
the split between the training and validation sets and the optimizer. This result shows that
the prediction performance was greatly improved by adding profile-based features. Both
evolutionary information and predicted local structural features contributed to improving
the performance, and the latter had a slightly larger contribution. When we used all these
features, the best performance was achieved. The results for metrics in addition to the
Pearson correlation on the validation dataset are shown in Table 3. For the other metrics,
the best performance was obtained when all features were used.

Table 2. Prediction performance for the combination of each feature.

Atom-Type Features Evolutionary Information Predicted Local Structure Pearson (Validation)

3 7 7 0.757
3 3 7 0.834
3 7 3 0.847
7 3 3 0.858
3 3 3 0.865

Columns 1–3 represent combinations of features referenced in Section 2.1. The fourth column represents the average Pearson
correlation coefficient for each target in the validation dataset. The best performance in the fourth column is in boldface.

Table 3. Performance in the CASP12 stage 2 test dataset.

Method Pearson Spearman Loss Z-Score

Proposed 0.856 0.782 4.319 1.240
(−) (−) (−) (−)

Sato-3DCNN
(AMSGrad)

0.746 0.675 5.530 1.139
(4.67 × 10−9) (5.31 × 10−7) (4.89 × 10−1) (4.99 × 10−1)

ProQ3D 0.750 0.672 7.989 0.922
(8.18 × 10−9) (3.41 × 10−7) (4.82 × 10−3) (7.38 × 10−3)

SBROD 0.682 0.612 7.063 0.967
(9.87 × 10−10) (1.87 × 10−7) (3.47 × 10−2) (4.23 × 10−2)

VoroMQA 0.671 0.592 7.649 0.963
(1.11 × 10−9) (1.77 × 10−9) (4.30 × 10−2) (4.30 × 10−2)

The first column represents the method name. The second and third columns show the average Pearson and
Spearman correlation coefficients per target. The fourth and fifth columns show the average GDT_TS loss and
average Z-score of selected models for each target. The values in parentheses are the p-values calculated by the
Wilcoxon signed-rank test for the difference between the proposed method and the comparison method. The best
values and p-values smaller than 0.01 are shown in bold.
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3.2. Comparison with Other Methods on CASP Datasets

We compared the proposed method with major single-model MQA methods on
the CASP12, CASP13 datasets. We used Sato-3DCNN [5], ProQ3D [22], SBROD [23],
and VoroMQA [24] as comparison methods. Sato-3DCNN is the direct predecessor of this
research. ProQ3D is a deep neural network-based method using profile-based features.
SBROD is a method using ridge regression with various geometric structural features.
VoroMQA is a method using a statistical potential that depends on interatomic contacts by
Voronoi tessellation.

The results of all comparison methods were executed by us. Sato-3DCNN is a retrained
model using the same training data as that of this method with an optimizer changed
from SMORMS3 [25] to AMSGrad. ProQ3D, which was last updated on 8 October 2017,
was downloaded, and we used the S-score version model. The version of VoroMQA was
1.19.2352. SBROD, which was last updated on 14 August 2019, was downloaded, and we
used the model that was trained using CASP5-10 for the training dataset.

The result for the CASP12 stage 2 dataset is shown in Table 3. The proposed method
showed better performances for each metric. To check whether there is a statistically
significant difference between the performance of the proposed method and the comparison
method, we conducted the Wilcoxon signed-rank test at a significance level of 0.01. As a
result, it is shown that there are statistically significant differences between the proposed
method and the comparison methods in terms of Pearson and Spearman correlation. For
GDT_TS loss and Z-score, there is no significant difference, but the proposed method
performed better than the other methods. Also, the results for the CASP13 stage 2 dataset
is shown in Table 4. Similarly, the results for CASP13 stage 2 showed that the proposed
method was better than the other existing methods.

Table 4. Performance in the CASP13 stage 2 test dataset.

Method Pearson Spearman Loss Z-Score

Proposed 0.797 0.757 5.708 1.264
(−) (−) (−) (−)

Sato-3DCNN
(AMSGrad)

0.748 0.703 6.527 1.167
(1.09 × 10−5) (1.84 × 10−5) (4.44 × 10−1) (3.93 × 10−1)

ProQ3D 0.686 0.638 9.482 0.990
(1.42 × 10−9) (2.03 × 10−10) (2.16 × 10−2) (2.29 × 10−2)

SBROD 0.674 0.637 10.014 0.930
(1.95 × 10−9) (3.38 × 10−9) (2.29 × 10−4) (5.99 × 10−4)

VoroMQA 0.676 0.624 12.105 0.786
(2.38 × 10−9) (2.52 × 10−11) (1.73 × 10−3) (1.15 × 10−3)

The legends are the same as those in Table 3.

We also compared the performance for each category of targets that represent the
difficulty of the prediction released by CASP. We used three categories: Free Modeling (FM),
Free Modeling/Template-Based Modeling (FM/TBM), and Templated Based Modeling
(TBM). The average Pearson correlation coefficient for each category in CASP13 are shown
in Table A4 and Figure A1. The proposed method is the best for each category. For
FM/TBM and TBM categories, there are significant differences between the proposed
method and the other methods. For the FM category, there is no significant difference due
to the small number of targets (12 targets).

4. Web Tool

The proposed method showed the best performance as a single-model MQA method.
However, it is impractical if it is not readily available to the user. For example, ProQ3D [22]
provides a web interface, but it simply outputs the global score for the entire model
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structure and the local score for each residue as text. Thus, we implemented a web-based
tool to make it even more user-friendly to check the results.

Figure 2 shows the input page of the web tool. The required inputs are an email
address and a model structure in PDB format or mmCIF format. A target sequence
in FASTA format can be entered as an option. If the sequence is not entered, a sequence
generated from the model structure file is used to construct the profile-based features. When
the prediction is finished, users will receive an email with an URL of the prediction result.

Figure 2. The input page of the web tool. The email address and the model structure in PDB format or mmCIF format are
required inputs, and the sequence in FASTA format is an optional input. You can check the number of running jobs and the
number of waiting jobs.

The execution time depends on the size of a protein. For a new protein, it takes a little
longer because it is necessary to generate a sequence profile. If the sequence length is about
500, it will take about 30 min to complete. However, for proteins that have been processed
before, the profile generation can be skipped, and the execution time is about one minute.

Figure 3 shows an example of the output of the web tool. It outputs a global score and
a bar chart of residue-wise local scores. A local score is an estimation of lDDT and it takes
values between 0 and 1. A higher value shows a better model structure. It also provides a
3D view of a model structure colored according to the prediction score for each residue.
The model structure is colored in rainbow colors, with red areas representing low local
scores and blue areas representing high local scores. It uses NGL viewer [26], and thus,
the user can move and rotate the model structure to visually check the quality.

Besides, the predictions can be downloaded in several formats. It is possible to
download a PDB file with prediction scores set to the b-factor of each residue. This makes
it possible to check the detailed structure and prediction scores in your local environment.
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Figure 3. The output page of the prediction results. The predicted score for the whole model, the predicted score for each
residue, and the three-dimensional structure colored by the local score is shown. The parts colored in blue represent high
local scores, and the parts colored in red represent low local scores. The results can be downloaded in multiple formats.

5. Conclusions

We developed a single-model MQA method based on 3DCNN, called P3CMQA. It
used sequence profile-based features and performed better quality estimation than that of
existing single-model MQA methods. We have also developed a web tool of the proposed
method, which provides prediction results in a user-friendly format.
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Abbreviations
The following abbreviations are used in this manuscript:

MQA Model Quality Assessment

P3CMQA
Profile-based three-dimensional Convolutional neural network for protein
structure Model Quality Assessment

GDT_TS Global Distance Test Total Score
lDDT Local Distance Diferrence Test
PSSM Position Specific Scoring Matrix
SS Secondary Structure
RSA Relative Solvent Accessibility

Appendix A

Appendix A.1

14 atom-type features is shown in Table A1.

Table A1. 14 atom-type features.

Type Description Residue:Atom

1 Sulfur/selenium CYS:SG, MET:SD, MSE:SE

2 Nitrogen (amide) ASN:ND2, GLN:NE2, backbone N
(including N-terminal)

3 Nitrogen (aromatic) HIS:ND1/NE1, TRP:NE1

4 Nitrogen (guanidinium) ARG:NE/NH*

5 Nitrogen (ammonium) LYS:NZ

6 Oxygen (carbonyl) ASN:OD1, GLN:OE1, backbone O (except C-terminal)

7 Oxygen (hydroxyl) SER:OG, THR:OG1, TYR:OH

8 Oxygen (carboxyl) ASP:OD*, GLU:OE*, C-terminal O, C-terminal OXTc

9 Carbon (sp2) ARG:CZ, ASN:CG, ASP:CG, GLN:CD, GLU:CD, backbone C

10 Carbon (aromatic) HIS:CG/CD2/CE1, PHE:CG/CD*/CE*/CZ,
TRP:CG/CD*/CE*/CZ*/CH2, TYR:CG/CD*/CE*/CZ

11 Carbon (sp3)

ALA:CB, ARG:CB/CG/CD, ASN:CB, ASP:CB, CYS:CB,
GLN:CB/CG, GLU:CB/CG, HIS:CB, ILE:CB/CG*/CD1,
LEU:CB/CG/CD*, LYS:CB/CG/CD/CE, MET:CB/CG/CE,
MSE:CB/CG/CE, PHE:CB, PRO:CB/CG/CD, SER:CB,
THR:CB/CG2, TRP:CB, TYR:CB, VAL:CB/CG*, backbone CA

12 Occupancy *:*

13 Backbone *:N, *:CA, *:C

14 CA *:CA

The first to the eleventh features are the features used by Derevyanko et al. [4] and the twelfth to the
fourteenth features are the features added by Sato et al. [5]. An asterisk (*) for a residue represents all
residues, and an asterisk for an atom represents either 1, 2, or 3. Note that the asterisk for a atom in
the Occupancy represents all atoms.

Appendix A.2

The detail of the network architecture is shown in Table A2.



Bioengineering 2021, 8, 40 10 of 12

Table A2. Neural network architecture of Sato-3DCNN.

Layer Name Output Shape Detail

Input 14 × 28 × 28 × 28
Conv3D 128 × 25 × 25 × 25 Batch Normalization, PReLU
Conv3D 256 × 22 × 22 × 22 Batch Normalization, PReLU
Conv3D 256 × 11 × 11 × 11 Batch Normalization, PReLU
Conv3D 512 × 8 × 8 × 8 Batch Normalization, PReLU
Conv3D 512 × 6 × 6 × 6 Batch Normalization, PReLU
Conv3D 1024 × 3 × 3 × 3 Batch Normalization, PReLU

Global Average Pooling 1024
Linear 1024 Batch Normalization, PReLU
Linear 256 Batch Normalization, PReLU
Linear 1

The first column shows the layer name; the second column shows the output shape of the layer;
and the third column shows the detailed information of the layer. The total number of parameters is
about 22 million.

Appendix A.3

The results against multiple metrics for each combination of features in the validation
dataset are shown in Table A3. In addition to the evaluation metrics in the test dataset,
we also include the area under an ROC curve (AUC score) since we trained the model
by binary classification. For all metrics, the performance was the best when all features
were used.

Table A3. Performance comparison in the validation dataset by feature combinations.

Atom-Type
Features

Evolutionary
Information

Predicted
Local

Structure
Pearson Spearman Loss Z-Score AUC

3 7 7 0.757 0.645 8.518 4.244 0.878
3 3 7 0.834 0.729 9.860 4.239 0.923
3 7 3 0.847 0.724 3.883 4.742 0.944
7 3 3 0.858 0.742 4.818 4.666 0.948
3 3 3 0.865 0.751 2.519 4.866 0.956

Columns 1–3 represent combinations of features referenced in Section 2.1. The fourth and fifth columns show the average Pearson
and Spearman correlation coefficient for each target in the validation dataset. The sixth and seventh show the average GDT_TS loss
and average Z-score of selected models for each target. The eighth column shows the area under an ROC curve (AUC) calculated
from the predicted local scores and the local labels.

Appendix A.4

In the CASP dataset, targets are divided into categories according to their prediction
difficulty. In the CASP13 dataset, there are six categories; FM, FM-sp, FM/TBM, TBM-
hard, TBM-easy, not evaluated. The categories can be obtained from the official CASP
page (https://predictioncenter.org/casp13/domains_summary.cgi, accessed on 9 March
2021.) Because of the many categories, we treat FM and FM-sp as FM and TBM-hard
and TBM-easy as TBM. Besides, these categories are assigned to each domain, and some
multi-domain targets belong to multiple categories. For such targets, we take the union
of the categories. For example, a multi-domain target that belongs to FM, TBM, and not
evaluated categories is treated as an FM/TBM category. Finally, the number of targets in
each category was 12 for FM, 15 for FM/TBM, and 37 for TBM, 1 for not evaluated.

We show the average Pearson correlation coefficient for each category of targets on
the CASP13 dataset in Table A4. The category “not evaluated” is excluded because there is
only one target and no significant comparison can be performed.

https://predictioncenter.org/casp13/domains_summary.cgi
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Table A4. The average Pearson correlation coefficient for each category of targets on CASP13 dataset.

Method FM (12 Targets) FM/TBM (15 Targets) TBM (37 Targets)

Proposed 0.757 (−) 0.812 (−) 0.822 (−)
Sato-

3DCNN(AMSGrad)
0.663 (2.44 × 10−3) 0.730 (4.27 × 10−3) 0.797 (8.47 × 10−3)

ProQ3D 0.626 (9.28 × 10−3) 0.689 (3.05 × 10−4) 0.712 (9.81 × 10−7)
SBROD 0.633 (1.61 × 10−2) 0.628 (4.27 × 10−4) 0.720 (6.23 × 10−6)

VoroMQA 0.579 (1.46 × 10−3) 0.661 (8.54 × 10−4) 0.724 (2.32 × 10−5)

The first column represents the method name. The columns 2 show the average Pearson correlation
coefficients for targets in category FM. Columns 3 and 4 similarly represent the values for targets in
category FM/TBM and TBM, respectively. The values in parentheses are the p-values calculated by
the Wilcoxon signed-rank test for the difference between the proposed method and the comparison
method. The best values and p-values smaller than 0.01 are shown in bold.

The distribution of the Pearson correlation coefficient for each target on the CASP13
dataset is shown in Figure A1.

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Pearson

Proposed

Sato-3DCNN

ProQ3D

SBROD

VoroMQA

M
et

ho
d

CASP13

Category
FM
FM/TBM
TBM
not evaluated

Figure A1. Swarm plot and box plot of the Pearson correlation coefficient for each target on CASP13.
The x-axis represents the Pearson correlation coefficient, and the y-axis represents the method. A point
represents a target, and the color of the point represents the category of the target.
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