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Abstract 
This research work investigates the use of Artificial Neural Network (ANN) 
based on models for solving first and second order linear constant coefficient 
ordinary differential equations with initial conditions. In particular, we em-
ploy a feed-forward Multilayer Perceptron Neural Network (MLPNN), but by-
pass the standard back-propagation algorithm for updating the intrinsic weights. 
A trial solution of the differential equation is written as a sum of two parts. 
The first part satisfies the initial or boundary conditions and contains no ad-
justable parameters. The second part involves a feed-forward neural network 
to be trained to satisfy the differential equation. Numerous works have ap-
peared in recent times regarding the solution of differential equations using 
ANN, however majority of these employed a single hidden layer perceptron 
model, incorporating a back-propagation algorithm for weight updation. For 
the homogeneous case, we assume a solution in exponential form and com-
pute a polynomial approximation using statistical regression. From here we 
pick the unknown coefficients as the weights from input layer to hidden layer 
of the associated neural network trial solution. To get the weights from hid-
den layer to the output layer, we form algebraic equations incorporating the 
default sign of the differential equations. We then apply the Gaussian Radial 
Basis function (GRBF) approximation model to achieve our objective. The 
weights obtained in this manner need not be adjusted. We proceed to develop 
a Neural Network algorithm using MathCAD software, which enables us to 
slightly adjust the intrinsic biases. We compare the convergence and the ac-
curacy of our results with analytic solutions, as well as well-known numerical 
methods and obtain satisfactory results for our example ODE problems. 
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Gaussian Radial Basis Function, Network Training, MathCAD (Computer 
Aided Design) 14, IBM-SPSS (Statistical Package for Social Science) 23 

 

1. Introduction 

The beginning of Neuro-computing is often taken to be the research article of 
McCulloch and Pitts [1] published in 1943, which showed that even simple types 
of neural networks could, in principle, compute any arithmetic or logical func-
tion, was widely read and had great influence. Other researchers, principally von 
Neumann, wrote a book [2] in which the suggestion was made that the research 
into the design of brain-like or brain-inspired computers might be of great in-
terest and benefit to scientific and technological knowledge. 

We present a new perspective for obtaining solutions of initial value problems 
using Artificial Neural Networks (ANN). We discover that neural network based 
model for the solution of ordinary differential equations (ODE) provides a num-
ber of advantages over standard numerical methods. Firstly, the neural network 
based solution is differentiable and is in closed analytic form. On the other hand 
most other techniques offer a discretized solution or a solution with limited dif-
ferentiability. Secondly, the neural network based method for solving a differen-
tial equation provides a solution with very good generalization properties. The 
major advantage here is that our method reduces considerably the computation-
al complexity involved in weight updating, while maintaining satisfactory accu-
racy. 

Neural Network Structure 

A neural network is an inter-connection of processing elements, units or nodes, 
whose functionality resemble that of the human neurons [3]. The processing 
ability of the network is stored in the connection strengths, simply called weights, 
which can be obtained by a process of adaptation to, a set of training patterns. 
Neural network methods can solve both ordinary and partial differential equa-
tions. Furthermore, it relies on the function approximation property of feed 
forward neural networks which results in a solution written in a closed analytic 
form. This form employs a feed forward neural network as a basic approxima-
tion element [4] [5]. Training of the neural network can be done either by any 
optimization technique which in turn requires the computation of the gradient 
the error with respect to the network parameters, by regression based model or 
by basis function approximation. In any of these methods, a trial solution of the 
differential equation is written as a sum of two parts, proposed by Lagaris [6]. 
The first part satisfies the initial or boundary conditions and contains no ad-
justable parameters. The second part contains some adjustable parameters that 
involves feed forward neural network and is constructed in a way that does not 
affect the initial or boundary conditions. Through the construction, the trial so-
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lution, initial or boundary conditions are satisfied and the network is trained to 
satisfy the differential equation. The general flowchart for neural network train-
ing (or learning) is given below in Figure 1. 

2. Neural Networks as Universal Approximators 

Artificial neural networks can make a nonlinear mapping from the inputs to the 
outputs of the corresponding system of neurons, which is suitable for analyzing 
the problem defined by initial/boundary value problems that have no analytical 
solutions or which cannot be easily computed. One of the applications of the 
multilayer feed forward neural network is the global approximation of real va-
lued multivariable function in a closed analytic form. Namely such neural net-
works are universal approximators. It is discovered in the literature that multi-
layer feed forward neural networks with one hidden layer using arbitrary squash-
ing functions are capable of approximating any Borel measurable function from 
one finite dimensional space to another with any desired degree of accuracy. 
This is made clear in the following theorem. 

Universal Approximation Theorem 

The universal approximation theorem for MLP was proved by Cybenko [7] and 
Hornik et al. [8] in 1989. Let nI  represent an n-dimensional unit cube containing 
all possible input samples ( )1 2, , , nx x x=x   with [ ]0,1ix ∈ , 1,2, ,i n=  . Let 
( )nC I  be the space of continuous functions on nI , given a continuous sigmo-

id function ( )ϕ ⋅ , then the universal approximation theorem states that the fi-
nite sums of the form 

( )
2

3 2

1 0
, ,  1, 2, ,

N n

k k ki ki j
i j

y y w w x k mϕ
= =

 
= = = 

 
∑ ∑x w            (1) 

are dense in ( )nC I . This simply means that given any function ( )nf C∈ I  and 
0ε > , there is a sum ( ),y x w  of the above form that satisfies 

( ) ( ), ,  ny f ε− < ∀ ∈x w x x I .                   (2) 

 

 
Figure 1. Network training flowchart. 
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3. Gradient Computation 

Minimization of error function can also be considered as a procedure for train-
ing the neural network [9], where the error corresponding to each input vector 
x  is the value ( )f x  which has to become zero. In computing this error value, 

we require the network output as well as the derivatives of the output with re-
spect to the input vectors. Therefore, while computing error with respect to the 
network parameters, we need to compute not only the gradient of the network 
but also the gradient of the network derivatives with respect to its inputs. This 
process can be quite tedious computationally, and we briefly outline this in what 
follows. 

3.1. Gradient Computation with Respect to Network Inputs 

Next step is to compute the gradient with respect to input vectors, for this pur-
pose let us consider a multilayer perceptron (MLP) neural network with n input 
units, a hidden layer with m sigmoid units and a linear output unit. For a given 
input vector ( )1 2, , , nx x x=x   the network output is written: 

( ) ( )
1

,
m

j j
i

N v zϕ
=

= ∑x p , 
1

n

j ji i j
i

z w x u
=

= +∑               (3) 

jiw  denotes the weight from input unit 𝑖𝑖 to the hidden unit 𝑗𝑗, jv  denotes 
weight from the hidden unit 𝑗𝑗 to the output unit, ju  denotes the biases, and 

( )jzϕ  is the sigmoid activation function. 
Now the derivative of networks output N with respect to input vector ix  is: 

( ) ( ) ( )1

1 1
,

m m

j j j ji
j ji i

N v z v w
x x

ϕ ϕ
= =

 ∂ ∂
= = ∂ ∂  

∑ ∑x p             (4) 

where ( ) ( )1ϕ ϕ≡ ∂ ∂x x . Similarly, the kth derivative of N is computed as;  

( )

1

m
kk k k

i j ji j
j

N x v w ϕ
=

∂ ∂ = ∑  

Where ( )j jzϕ ϕ≡  and ( )kϕ  denotes the kth order derivative of the sigmoid 
activation function. 

3.2. Gradient Computation with Respect to Network Parameters 

Network’s derivative with respect to any of its inputs is equivalent to a feed- 
forward neural network ( )kN x  with one hidden layer, having the same values 
for the weights jiw  and thresholds ju  and with each weight jv  being re-
placed with j jv p . Moreover, the transfer function of each hidden unit is re-
placed with the kth order derivative of the sigmoid function. Therefore, the gra-
dient of kN  with respect to the parameters of the original network can easily 
obtained as: 

3.3. Network Parameter Updation 

After computation of derivative of the error with respect to the network para-
meter has been defined then the network parameters jv , ju  and jiw  upda-
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tion rule is given as, 

( ) ( )1 k
j j

j

N
t tν ν µ

ν
∂

+ = +
∂

, ( ) ( )1 k
j j

j

N
u t u t

u
η
∂

+ = +
∂

, ( ) ( )1 k
ji ji

ji

N
w t w t

w
γ
∂

+ = +
∂

 

(5) 

where µ , η  and γ  are the learning rates, 1,2, ,i n=   and 1,2, ,j m=  . 
Once a derivative of the error with respect to the network parameters has been 

defined it is then straightforward to employ any optimization technique to mi-
nimize error function. 

4. General Formulation for Differential Equations 

Let us consider the following general differential equations which represent both 
ordinary and partial differential equations Majidzadeh [10]: 

( ) ( ) ( )( )2, , , , 0, ,G x x x x x Dψ ψ ψ∇ ∇ = ∀ ∈             (6) 

subject to some initial or boundary conditions, where ( )1 2, , , n
nx x x x= ∈  , 

nD ⊂   denotes the domain, and ( )xψ  is the unknown scalar-valued solu-
tion to be computed. Here, G is the function which defines the structure of the 
differential equation and ∇  is a differential operator. Let ( ),t x pψ  denote the 
trail solution with parameters (weights, biases) p. Tian Qi et al. [11], gave the 
following as the general formulation for the solution of differential equations (5) 
using ANN. Now, ( ),t x pψ  may be written as the sum of two terms 

( ) ( ) ( )( ), , , ,t x p A x F x N x pψ = +                  (7) 

where ( )A x  satisfies initial or boundary condition and contains no adjustable 
parameters, whereas ( ),N x p  is the output of feed forward neural network with 
the parameters p and input data x. The function ( )( ), ,F x N x p  is actually the 
operational model of the neural network. Feed forward neural network (FFNN) 
converts differential equation problem to function approximation problem. The 
neural network ( ),N x p  is given by; 

( ) ( )
1

,
m

j j
j

N x p v zσ
=

= ∑ , 
1

n

j ji i j
i

z w x u
=

= +∑               (8) 

jiw  denotes the weight from input unit i to the hidden unit j, jv  denotes 
weight from the hidden unit j to the output unit, ju  denotes the biases, and 

( )jzσ  is the sigmoid activation function. 

Neural Network Training 

The neural network weights determine the closeness of predicted outcome to the 
desired outcome. If the neural network weights are not able to make the correct 
prediction, then only the biases need to be adjusted. The basis function we shall 
apply in this work in training the neural network is the sigmoid activation func-
tion given by 

( ) ( ) 1
1 e jz

jzσ
−−= + .                       (9) 
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5. Method for Solving First Order Ordinary  
Differential Equation 

Let us consider the first order ordinary differential equation below 

( ) ( ) [ ], ,  ,x f x x a bψ ψ′ = ∈                    (10) 

with initial condition ( )a Aψ = . In this case, the ANN trial solution may be 
written as 

( ) ( ), , ,t x p A xN x pψ = +                    (11) 

where ( ),N x p  is the neural output of the feed forward network with one in-
put data x with parameters p. The trial solution ( ),t x pψ  satisfies the initial 
condition. Now let us consider a first order differential equation: 

( ) [ ] ( )0,  0,1 ,  0 1x xψ ψ ψ′ − = ∈ =                 (12) 

with trial solution: 

( ) ( ), , ,t x p A xN x pψ = +                    (13) 

where x is the input to neural network model and p represents the parameters— 
weights and biases. 

( ) ( ) ( )0, 0 0, 1tw p A N p A= + = =  ( ) ( ), 1 , ,t x p xN x pψ⇒ = +     (14) 

To solve this problem using neural network, we shall employ a neural network 
architecture with three layers. One input layer with one neuron; one hidden 
layer with three neurons and one output layer with one output unit, as depicted 
below in Figure 2. 

Each neuron is connected to other neurons of the previous layer through 
adaptable synaptic weights jw  and biases ju . Now,  

( ) ( ), 1 ,t i i ix p x N x pψ = + , with ( ) ( )
3

1
,i j j

j
N x p v zσ

=

= ∑ , and 

( ) ( ) ( ) ( )
3

1 1 2 2 3 3j j
j i

v z v z v z v zσ σ σ σ
=

= + +∑ ,            (15) 

where 1 1 11 1 2 1 12 2 3 1 13 3, ,z x w u z x w u z x w u= + = + = + . 
 

 
Figure 2. Schematic for ( ),N x p . 
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Now, in solving ordinary differential equations, we assume a solution to the 
homogeneous part and approximate the function using SPSS model, which es-
timates the regression coefficients in the multiple regression mode. These coeffi-
cients are what we use as the weights from the input layer to the hidden layer. 
The condition placed on ( ) ( )ay x f x= , say, where ( )ay x  is the assumed so-
lution is that ( ) 0f x ≠ . 

Any exponential function, ( ) e xy x α= , where α ∈ , is a part of solution to 
any first order ordinary differential equation. We regress that function using ex-
cel spreadsheet and SPSS model as follows: 

Assuming we let ( ) ( ) [ ]2e , 0,1x
ay x f x x= = ∈ , be a solution to a given first 

order ordinary differential equation, ( )2y y f x′ − = , defined on the given in-
terval. Then dividing the interval into 10 equidistant points, we use excel spread-
sheet to find values of ( )ay x  at all the points shown in Table 1, then use SPSS 
to regress and get the weights which we designate weights from input layer to 
hidden layer. 

The above is followed by the display of the SPSS 20 output of the data in Ta-
ble 2, from which we pick the weights. 

Looking at Table 2, we see that the cubic curve fits perfectly the assumed so-
lution. Therefore, we pick the coefficients: 2.413, 0.115 and 3.860 as the weights 
from input layer to the hidden layer. 

The next task is to obtain the weights from hidden layer to the output layer. 
We shall find ( )f x , a real function of a real valued vector ( )T

1 2, , , dx x x x=   
and a set of functions, ( ){ }i xϕ  called the elementary functions such that 

( ) ( )
1

ˆ ,
N

i i
i

f x v v xϕ
=

= ∑                      (16) 

is satisfied, where iv  are real valued constants such that ( ) ( )ˆ ,f x f x v ε− < . 
When one can find coefficients iv  that make ε  arbitrarily small for any func-
tion ( ).f  over the domain of interest, we say that the elementary function set 

( ){ }.iϕ  has the property of universal approximation over the class of functions 
( ).f . There are many possible elementary functions we can choose from which 

we will show later. Now if the number of input vectors ix  is made equal to the  
 

Table 1. Table of values for the relationship between ya and x. 

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y 1 1.2214 1.49183 1.82212 2.22554 2.71828 3.32012 4.0552 4.95303 6.04965 7.38906 

 
Table 2. Model summary and parameter estimates. 

Equation R2 Constant b1 b2 b3 

Linear 0.930 0.240 6.109 
  

Quadratic 0.998 1.126 0.205 5.904 
 

Cubic 1.000 0.987 2.413 0.115 3.860 

The Independent variable is X 
   

https://doi.org/10.4236/am.2021.1210059


R. N. Okereke et al. 
 

 

DOI: 10.4236/am.2021.1210059 907 Applied Mathematics 
 

number of elementary functions ( ).iϕ , then the normal equations can be given 
as; 

( ) ( )

( ) ( )

( )

( )

1 1 1 1 1

1

N

N N N N N

x x v f x

x x v f x

ϕ ϕ

ϕ ϕ

    
     =    
        



    



             (17) 

and the solution becomes 1v fφ−= , where v becomes a vector with the coeffi-
cients, f is a vector composed of the values of the function at the N points, and 
φ  the matrix with entries given by values of the elementary functions at each of 
the N points in the domain. An important condition that must be placed in the 
elementary functions is that the inverse of φ  must exist. In general, there are 
many sets ( ){ }.iϕ  with the property of universal approximation for a class of 
functions. We would prefer a set ( ){ }.iϕ  over another ( ){ }.iγ  if ( ){ }.iϕ  pro-
vides a smaller error ε for a pre-set value of N. This means that the speed of 
convergence of the approximation is also an important factor in the selection of 
the basis. As we mentioned earlier, there are many possible elementary basis 
functions we can choose from. A typical example of basis function is the Gaus-
sian basis specified by: 

( ) ( ) ( )2exp 1,2, ,;iG z G x c z i N= − = − = 

 
However in neuro-computing, the most popular choice for elementary func-

tions is the radial basis function (RBFs) where ( )i xϕ  is given; 

( )
2

2exp
2

i
i

x x
xϕ

σ

 −
 = −
 
 

                    (18) 

where 2σ  is the variance of input vectors x. It is this last basis function that we 
shall adopt in generating our weights from hidden layer to output layer. At this 
point we shall divide a given interval into a certain number of points equidistant 
from each other and choose input vectors ix  to conform with the number of 
elementary functions ( ).iϕ  to make the basis function implementable. Here N 
= 3 and the solution 1v fφ−=  is given by; 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1
1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 2

3 1 3 2 3 3 3 3

v x x x f
v x x x f
v x x x f

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

−
    
    =     
        

             (19) 

where , ,v fφ  are as defined before, and 

( ) ( )
2

22
2

1 1

1 1exp , ,
2

N N
i

i i i
i i

x x
x x x x x

N N
ϕ σ

σ = =

 −
 = − = − =
 
 

∑ ∑       (20) 

Now to compute ( )f x  depends on the nature of a given differential equa-
tion. For first, second or higher order homogeneous ordinary differential equa-
tions, we form linear, quadratic or higher order polynomial equations incorpo-
rating the default signs of the terms in the differential equations. For non-ho- 
mogeneous ordinary differential equations, we use the forcing functions. When 
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the weights of the neural network are obtained by these systematic ways, there is 
no need to adjust all the parameters in the network, as postulated by previous 
researchers, in order to achieve convergence. All that is required is a little ad-
justment of the biases, and these are fixed to lie in a given interval and conver-
gence to a solution with an acceptable minimum error is achieved. When the 
problem of obtaining the parameters is settled, it becomes easy to solve any first, 
second or higher order ordinary differential equation using the neural network 
model appropriate to it. We shall restrict this study to first and second order li-
near ordinary homogeneous differential equations. To compute the prediction 
error we use the squared error function defined as follows: 

( )2
0.5 d pE ψ ψ= −                       (21) 

where dψ  represents the desired output and pψ  the predicted output. The 
same procedure can be applied to second and third order ODE. For the second 
order initial value problem (IVP): 

( ) ( )( ) ( ) ( ), , ,  0 ,  0x f x x A Bψ ψ ψ ψ ψ′′ ′ ′= = =            (22) 

The trial solution is written 

( ) ( )2 ,t x A Bx x N x pψ = + +                   (23) 

where ,A B∈  and ( ) ( )
3

1
,i j j

j
N x p v zσ

=

= ∑ , and for two point BC:  

( ) ( )0 , 1A Bψ ψ= =  the trial solution in this case is written:  

( ) ( ) ( ) ( )1 1 ,t x A x Bx x x N x pψ = − + + − . 

Now, we first demonstrate the computational complexity involved in adjust-
ing all parameters in order to update the weights and getting a close approxima-
tion to the desired result. Subsequently, we proceed to our main results and 
analysis that displays the ease of computation achieved by our novel method of 
adjusting only the biases. The former adjustment or weight updation is done us-
ing the backpropagation algorithm. Therefore, we need to train the network so 
we can apply the backpropagation algorithm. The basis function we shall apply 
in this work in training the neural network is the sigmoid activation function 
given by Equation (9). In a simple neural model as depicted in Figure 3, where 
there is no hidden layer and ( ) ( )1 2 1 2, , ,x x x w w w= = , we shall assume some 
figures for illustration. Let the training data be given as ( ) ( )1 2, 0.1,0.2x x x= = ; 
desired output 0.02dy = ; initial weights ( ) ( )1 2, 0.4,0.1w w w= = ; the bias  

1.78b =  and predicted output py . The diagram below shows the neural net-
work training model for the sample data we are considering. Now we proceed to 
train the network to get the predicted output. 

5.1. Network Training 

First we compute 1 1 2 2z x w x w b= ⋅ + ⋅ + , which is sum of products and bias, i.e.; 

( ) ( ) ( ) ( )1 1 2 2 0.1 0.4 0.2 0.1 1.78 1.84z x w x w b= + + = + + =       (24) 
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Figure 3. Schematic for ( ),N x p . 

 
Next we apply z, as input to the activation function, which in this case is the 

sigmoid activation function: 

( ) ( ) ( )1 11.841 e 1 e 0.863zzσ
− −− −= + = + = . Hence the predicted output  

0.863py = . 

We have seen that the predicted output does not correspond to the desired 
output, therefore we have to train the network to reduce the prediction error. To 
compute the prediction error, we use the squared error (21) function defined as 
follows. Considering the predicted output we calculated above, the prediction 
error is: 

( )20.5 0.02 0.863 0.355E = − = .                 (25) 

We observe that the prediction error is huge, so we must attempt to minimize 
it. We noted previously that the weights determine how close a predicted output 
is to the desired output. Therefore to minimize the error we have to adjust the 
weights. This can be achieved using the formula; 

( )n o d pw w y y xη= + −                     (26) 

where nw  and ow  represent new and old weights respectively. We update the 
weights using the following: 

ow : current weight (1.78, 0.4, 0.1); 
η : network learning rate = 0.01; 

dy : desired output = 0.02; 
x: current input vector = (+1, 0.1, 0.2). 

[ ] [ ][ ] [ ] 1.78,0.4,0.1 0.01 0.02 0.863 1,0.1,0.2 1.772,0.399,0.098nw∴ = + − + = . 

With this information we adjust the model and retrain the neural network to 
get; 

( ) ( )0.1 0.399 0.2 0.098 1.772 1.79z = + + =  ( ) ( ) 11.79 1 e 0.857zσ
−−⇒ = + =  

( )2  0.5 0.02 0.857 0.350E∴ = − = . 
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5.2. Computation of the Gradient 

The error computation not only involves the outputs but also the derivatives of 
the network output with respect to its inputs. So, it requires computing the gra-
dient of the network derivatives with respect to its inputs. Let us now consider a 
multilayered perceptron with one input node, a hidden layer with m nodes, and 
one output unit. For the given inputs ( )1 2, , , nx x x x=  , the output is given by 

( ) ( )
1

,
m

j j
j

N x p v zσ
=

= ∑                      (27) 

where 
1

n
j ji i jiz w x u

=
= +∑ , jiw  denotes the weight from input unit i to the 

hidden unit j, jv  denotes weight from the hidden unit j to the output unit, ju  
denotes the biases, and ( )jzσ  is the sigmoid activation function. The deriva-
tives of ( ),N x p  with respect to input ix  is 

( )

1
,

k m
kk

j ji jk
ji

N v w
x

σ
=

∂
=

∂
∑                      (28) 

where ( )jzσ σ=  and ( )kσ  denotes the kth order derivative of sigmoid func-
tion. 

Let Nθ  denote the derivative of the network with respect to its inputs and 
then we have the following relation 

( )nn
i i iN D N v pθ σ= = ∑ ; 

1

kn

j jk
k

p wλ

=

=∏ , 
1

n

i
i

k λ
=

= ∑          (29) 

The derivative of Nθ  with respect to other parameters may be obtained as 

( )k
j j

j

N
p

v
θ σ

∂
=

∂
, ( )1k

j j j
j

N
v p

v
θ σ +∂
=

∂
, 

( ) ( )1 1

1, 1

i kk k
j j j j j i ji ji j

k kji

N
x v p v w w

w
λ λθ σ λ σ+ −

= ≠

 ∂
= +  ∂  

∏            (30) 

Now after getting all the derivatives we can find out the gradient of error. Us-
ing general learning method for supervised training we can minimize the error 
to the desired accuracy. We illustrate the above using the first order ordinary 
differential equation below 

( ) ( ) [ ], ,  ,x f x x a bψ ψ′ = ∈                   (31) 

with initial condition ( )a Aψ = . In this case, the ANN trial solution may be 
written as 

( ) ( ), , ,t x p A xN x pψ = +                    (32) 

where ( ),N x p  is the neural output of the feed forward network with one in-
put data x with parameters p. The trial solution ( ),t x pψ  satisfies the initial 
condition. We differentiate the trial solution ( ),t x pψ  to get 

( ) ( ) ( )d , d ,
, ,

d d
t x p N x p

N x p x
x x

ψ
= +                (33) 

For evaluating the derivative term in the right hand side of (32), we use equa-
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tions (6) and (26)–(31). The error function for this case may be formulated as 

( ) ( ) ( )( )
2

1

d ,
, ,

d

n
t i

i t i
i i

w x p
E p f x w x p

x=

 
= −  

 
∑             (34) 

The weights from input to hidden are modified according to the following 
rule 

1r r
ji ji r

ji

Ew w
w

η+
 ∂

= −   ∂ 
                     (35) 

where 

( ) ( )( )
2

1

d ,
, ,

d

n
t i

i t ir r
i iji ji

w x pE f x w x p
xw w =

  ∂ ∂  = −   ∂ ∂   
∑           (36) 

Here, 𝜂𝜂 is the learning rate and r is the iteration step. The weights from hid-
den to output layer may be updated in a similar formulation as done for input to 
hidden. Now going back to Equation (27), we recall that 

1
n

j ji i jiz w x u
=

= +∑   

and ( ) ( )
1

,
m

j j
j

N x p v zσ
=

= ∑ .This implies that; 

( ) ( ) ( )

( ) ( )

d , d d
d d d

dd d
d d d

m m

j ji i j j ji i j
j j

m m
j

j j j j
j j j

N x p
v w x u v w x u

x x x
z

v z v z
x z x

σ σ

σ σ

= + = +

= = ⋅

∑ ∑

∑ ∑
      (37) 

If the neural network model is a simple one as we saw in Section 3.3, then, 

( ) ( ) ( )1 1 2 2,N x p z x w x w uσ σ= = + +  
1 1 2 2

d d d d;  
d d d d
N z N z
x z x x z x

σ σ∂ ∂
⇒ = ⋅ = ⋅

∂ ∂
 

Now let us consider a first order differential equation: 

( ) [ ] ( )0,  0,1 ,  0 1x xψ ψ ψ′ − = ∈ =                 (38) 

with trial solution: 

( ) ( ), ,t x p A xN x pψ = +                     (39) 

where x is the input to neural network model and p represents the parameters— 
weights and biases. 

( ) ( ) ( )0, 0 0, 1tw p A N p A= + = =  ( ) ( ), 1 ,t x p xN x pψ⇒ = +     (40) 

To solve this problem using neural network (NN), we shall employ a NN ar-
chitecture given in Figure 3. Now, ( ) ( ), 1 ,t i i ix p x N x pψ = + , with  

( ) ( )3
1,i j jjN x p v zσ
=

= ∑ , and 

( ) ( ) ( ) ( )
3

1 1 2 2 3 3
1

j j
j

v z v z v z v zσ σ σ σ
=

= + +∑
 

where 1 1 11 1z x w u= + , 2 1 12 2z x w u= +  and 3 1 13 3z x w u= + . 
If the neural network model is not able to predict correctly the solution of the 

differential equation with the given initial parameters—weights and biases, we 

https://doi.org/10.4236/am.2021.1210059


R. N. Okereke et al. 
 

 

DOI: 10.4236/am.2021.1210059 912 Applied Mathematics 
 

need to find the prediction error given by 

( ) ( ) ( )( )
2

1

d ,
, ,

d

n
t i

i t i
i i

w x p
E p f x w x p

x=

 
= −  

 
∑ .           (41) 

If the prediction error does not satisfy an acceptable threshold, then the pa-
rameters need to be adjusted using the equation, 

1r r
ji ji r

ji

Ew w
w

η+
 ∂

= −   ∂ 
, where 

( ) ( )( )
2

1

d ,
, ,

d

n
t i

i t ir r
i iji ji

w x pE f x w x p
xw w =

 ∂ ∂
= −  ∂ ∂  

∑ (42) 

Recall that: ( ) ( ), 1 ,t i i ix p x N x pψ = + , and 

( ) ( )( ) ( ) ( )d d d, 1 , , ,
d d d

t
i i i i i i

i i i

w
x p x N x p N x p x N x p

x x x
= + = + .     (43) 

( ) ( ) ( )
3 3

1
1 11 1 1

31 2
1 2 3

1 1 2 1 3 1

d d d  ,
d d d

dd dd d d
d d d d d d

j j j j
j j

N x p v z v z
x x x

zz zv v v
z x z x z x

σ σ

σ σ σ
= =

∴ = =

= + +

∑ ∑

 

( ) ( ) ( ) ( )1 1 1 11 2 2 12 3 3 13
1

d ,
d

N x p v z w v z w v z w
x

σ σ σ′ ′ ′= + +        (44) 

Putting Equations (42) and (43) into Equation (40) gives 

( ) ( ) ( ) ( )( )
2

1

d, , 1 ,
d

n

i i i
i i

E p N x p x N x p xN x p
x=

  
= + − +     
∑

 

( ) ( ) ( ) ( )
2

3 3

1 1
1 11

d , 1
dj j i j j

j j
E p v z x N x p x v z

x
σ σ

= =

   
∴ = + − −        

∑ ∑    (45) 

( ) ( ) ( ) ( )(
( ) ( ) ( )( )
( ) ( ) ( )( ))

1 1 2 2 3 3

1 1 1 11 2 2 12 3 3 13

2

1 1 1 2 2 3 3

    

1

E p v z v z v z

x v z w v v z w v z w

x v z v z v z

σ σ σ

σ σ σ

σ σ σ

⇒ = + +

′ ′ ′+ + + +

− − + +

    (46) 

We noted earlier that when the neural network is not able to predict accepta-
ble solution, that is, solution with minimum error, the weights and biases need 
to be adjusted. This involves complex derivatives with multivariable chain rule 
[11] [12]. From the ongoing, we need to compute the derivative of Equation (46) 
with respect to the weights and biases. That is: 

( ) ( ) ( )(

( ) ( ) ( )( )
( ) ( ) ( )( ))

1 1 2 2 3 3

1 1 1 11 2 2 12 3 3 13

2

1 1 1 2 2 3 31

r r
ji ji

E v z v z v z
w w

x v z w v v z w v z w

x v z v z v z

σ σ σ

σ σ σ

σ σ σ

∂ ∂
= + +

∂ ∂

′ ′ ′+ + + +

− − + +

       (47) 

Similarly, to update the weights from the hidden layer to output layer, we com-
pute , 1, 2,3jE v j∂ ∂ = . Finally, we update the biases by computing  

, 1, 2,3jE u j∂ ∂ = . Equation (47) together with jE v∂ ∂  and jE u∂ ∂  are used 
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to update the weights and biases. The superscript (r) denotes the rth iteration. 
It is important to note that the foregoing is necessary in order to achieve the 

number of iterations required. Sometimes, it may be necessary to do up to 30 or 
more iterations for the solution to converge within an acceptable threshold. It is 
on the basis of this complex derivatives involved in solving ODE with neural 
network, especially of higher order, and the many iterations required for con-
vergence that motivated our search for a more efficient and accurate way of 
solving the given problem, but avoiding the inherent computational complexity. 

5.3. Results 

We begin with a couple of examples on first and second order differential equa-
tions. 

5.4. Example 

Consider the initial value problem; 

( ) [ ]0;  0 1,  0,1 ,  1.y y y xα α′ − = = ∈ ≡               (48) 

This equation has been solved by Mall and Chakraverty [13]. As discussed in 
the previous section, the trial solution is given by; 

( ) ( ),ty x A xN x p= +  
Applying the initial condition gives 1A = , therefore ( ) ( )1 ,ty x xN x p= + . 
To obtain the weights from input to hidden layer, it is natural to assume  
( ) ex

ay x = . We approximate this function using regression in SPSS. We shall 
train the network for 10 equidistant points in [0, 1], and then employ excel 
spreadsheet to find values of ( ) ex

ay x =  at all the points. This leads us to the 
following data in Table 3. 

We then perform a curve-fit polynomial regression built into IBM SPSS 23 
[14], for the function ( ) ex

ay x = . The output is displayed below in Table 4. 
Table 4 displays the linear, quadratic and cubic regression of ( ) ex

ay x = . The 
quadratic and cubic curves show perfect goodness of fit, 2 1R = . Using the cu-
bic curve, we pick our weights from input layer to hidden layer as:  

 
Table 3. Values of ( )( ), ex

ax y x =  for problem (47). 

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y 1 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221 2.014 2.226 2.4596 2.7183 

 
Table 4. Model summary and parameter estimates. 

Equation R2 Constant b1 b2 b3 

Linear 0.981 0.883 1.698 
  

Quadratic 1.000 1.010 0.856 0.842 
 

Cubic 1.000 1.000 1.016 0.423 0.279 

The Independent variable is X 
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11 12 131.016, 0.423, 0.279w w w= = = . Now to compute the weights from hidden 
layer to the output layer, we find a function ( )xϑ  such that 1v fφ−= ; ,v f  
and φ  are as defined in Section 3. In particular, ( ) ( ) ( ) ( )( )T

1 2 3, ,f x x x xϑ ϑ ϑ= . 
We now form a linear function based on the default sign of the differential equa-
tion, i.e. ( )x ax bϑ = − , where a is the coefficient of the derivative of y and b is 
the coefficient of y Thus; 

( ) ( ) ( ) ( ) ( )( ) ( )T T
1 2 31, , , 1.1,1.2,1.3x x f x x x xϑ ϑ ϑ ϑ= + = =

 
The neural architecture for the neural network is shown in Figure 2, so we let 

3N = . We take ( )T0.1,0.2,0.3x =  and ( ) ( )T1.1,1.2,1.3f x = . It then follows 
that 

1v fφ−= , 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1
1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 2

3 1 3 2 3 3 3 3

 
v x x x
v x x x
v x x x

ϕ ϕ ϕ ϑ
ϕ ϕ ϕ ϑ
ϕ ϕ ϕ ϑ

−
    
    ⇒ =     
        

       (49) 

where 

( ) ( )2

2exp , 1,2,3; 1,2,3.
2

i j
i j

x x
x i jϕ

σ

 − = − = =  
 

          (50) 

Substituting the given values of the vectors x and f, we obtain the weights 
from the hidden layer to the output layer, 

1
1

2

3

1 0.94 0.78 1.1 5.17
0.94 1 0.94 1.2 9.375
0.78 0.94 1 1.3 6.08

v
v
v

−
       
       = = −       
             

,          (51) 

Therefore the weights from the hidden layer to the output layer are;  

1 2 35.17, 9.375, 6.08v v v= = − = . 
The biases are fixed between –1 and 1. We now train the network with the 

available parameters using MathCAD 14 software [15] as follows: 

( ) ( ) ( )

1 2 3

1 2 1 2 3

1 1 1 2 2 2 3 3 3
1

1 1 2

w : 1.016   w : 0.423   w : 0.279   x : 1   
v : 5.17     v : 6.08     u : 1     u : 0.2251    u : 0.1
z : w x u 2.016     z : w x u 0.6481    z : w x u 0.179

z : 1 exp z 0.882467,  z : 1 ex
−

= = = =

= = = = = −

= ⋅ + = = ⋅ + = = ⋅ + =

σ = + = σ = +   ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )( )

1
2

1
3 3

1 1 2 2 3 3

x
p d

2 10
d p

p z 0.656582,

z : 1 exp z 0.544631

N : v z v z v z 1.718251

y x : 1 x N 2.718251,   y x : e 2.718282

E : 0.5 y x y x 4.707964 10

−

−

−

=  

 σ = + = 
= ⋅σ + ⋅σ + ⋅σ =

= + ⋅ = = =

= ⋅ − = ×

. 

Here yd and yp are respectively the desired output (exact solution) and the 
predicted output (trial solution). From the indicated error value, this is an ac-
ceptable accuracy. We compare our results with the neural network results ob-
tained by Otadi and Mosleh [16] and find them to be in reasonable agreement. 
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This is depicted in Table 5, as well as the graphical profile in Figure 4 below. 
The perfect accuracy is evident in the graphical profile depicted in Figure 4. 

5.5. Remark 

In what follows, we consider a non-homogeneous second order linear differen-
tial equation. It is important to recall that for any second order non-homoge- 
neous differential equation of the form ( ) ( ) ( ) ( )y x a x y b x y f x′′ ′+ + = , the non- 
homogeneous term ( )f x  is termed the forcing function. In this section, we 
shall employ the forcing function to compute the weights from hidden layer to 
the output layer. This is made clear in the following example. 

5.6. Example 

Consider the initial value problem; 

( ) ( ) ( ) [ ]4 24cos 2 ;  0 3,  0 4,  0,1y y x y y x′′ ′− = = = ∈ . 

The trial solution is ( ) ( )2 ,ty x A Bx x N x p= + + . Applying the initial condi-
tion gives 3, 4A B= = . 

Therefore, ( ) ( )23 4 ,ty x x x N x p= + + , ( ) 2 3e ex x
ay x − −= + . 

We use excel spreadsheet to find values of ( )ay x  at all the x points, as dis-
played in Table 6. 

Using regression and SPSS model we find weights from input layer to hidden 
layer. From Table 7 and using the cubic curve fit with R2 = 1, we pick our 
weights from input layer to hidden layer as: 

11 12 130.488, 1.697, 3.338w w w= = = . 

Now to compute the weights from hidden layer to the output layer, we use the 
function:  

 
Table 5. Comparison of the results. 

Input data (X) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y Exact 1 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221 2.0138 2.226 2.46 2.7183 

Y Pred 1 1.1052 1.2214 1.3499 1.4918 1.6488 1.8222 2.0137 2.226 2.46 2.7183 

 

 
Figure 4. Plot of Y exact and Y predicted for Example 1. 
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( ) ( )
( ) ( ) ( ) ( )( ) ( )T T

1 2 3

24cos 2 ,

 , , 23.999854,23.999415,23.998684

x x

f x x x x

ϑ

ϑ ϑ ϑ

=

= =  
With ( )T0.1,0.2,0.3x = . Hence, the weights from the hidden layer to the out-

put layer given by 1v fφ−=  are; 
1

1

2

3

1 0.94 0.78 23.999854
0.94 1 0.94 23.999415
0.78 0.94 1 23.998684

v
v
v

−
     
     =     
           

1

2

3

112.489
 187.474

112.483

v
v
v

   
   ⇒ = −   
       

The weights from the hidden layer to the output layer are;  

1 2 3112.489, 187.474, 112.483v v v= = − = . 
The biases are fixed between −1 and 1. We now train the network with the 

available parameters using our MathCAD 14 algorithm as follows: 

( ) ( )

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

1 1

w : 0.488   w : 1.697     w : 3.338      x : 1   
v : 112.489     v : 187.474   v : 112.483  u : 1     u : 1      u : 0.1691
z : w x u 1.488     z : w x u 2.697     z : w x u 3.1689

σ z : 1 exp z

= = = =

= = − = = = = −

= ⋅ + = = ⋅ + = = ⋅ + =

= + − ( ) ( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )( )

1 1
2 2

1
3 3

1 1 2 2 3 3

2
p

2 x 2 x
d

2 8
d p

0.815778,  σ z : 1 exp z 0.936849,

σ z : 1 exp z 0.959647

N : v σ z v σ z v σ z 24.075112

y x : 3 4 x x N 31.075112,

y x : 4 e 2 e 3 cos 2 x 31.075335

E : 0.5 y x y x 2.502862 10

− −

−

⋅ − ⋅

−

= = + − =     

 = + − = 
= ⋅ + ⋅ + ⋅ =

= + ⋅ + ⋅ =

= ⋅ + ⋅ − ⋅ ⋅ =

= ⋅ − = ×

. 

We compare the exact and approximate solution in Table 8. The accuracy is 
clearly depicted graphically in Figure 5. 

 
Table 6. Values of ( )( )2 2, e ex x

ax y x −= + . 

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y 2 2.0401 2.1621 2.3709 2.67487 3.0862 3.6213 4.3018 5.1549 6.2149 7.524 

 
Table 7. Model summary and parameter estimates. 

Equation R2 Constant b1 b2 b3 

Linear 0.887 1.630 5.283 
  

Quadratic 0.995 1.931 -3.698 6.703 
 

Cubic 1.000 1.985 0.488 1.697 3.338 

The Independent variable is X 
   

 
Table 8. Comparison of the results. 

Input data (X) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y Exact 3 3.6408 4.7630 6.3668 8.4520 11.0188 14.0670 17.5968 21.6081 26.1008 31.0751 

Y Pred 3 3.5829 4.5448 5.9101 7.7107 9.9879 12.7958 16.2041 20.3035 25.2108 31.0753 
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Figure 5. Plot of Y exact and Y predicted for Example 2. 

6. Conclusion 

In this paper, we have presented a novel approach for solving first and second 
order linear ordinary differential equations with constant coefficients. Specifically, 
we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but 
avoid the standard back-propagation algorithm for updating the intrinsic weights. 
This greatly reduces the computational complexity of the given problem. Our 
results are validated by the near perfect approximations achieved in comparison 
with the exact solutions, as well as demonstrating the function approximation 
capabilities of ANN. This then proves the efficiency of our neural network pro-
cedure. We employed Excel spreadsheet, IBM SPSS 23, and MathCAD 14 algo-
rithm to achieve this task. 
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