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Abstract 
In this study we investigate neural network solutions to nonlinear differential 
equations of Ricatti-type. We employ a feed-forward Multilayer Perceptron 
Neural Network (MLPNN), but avoid the standard back-propagation algo-
rithm for updating the intrinsic weights. Our objective is to minimize an er-
ror, which is a function of the network parameters i.e., the weights and biases. 
Once the weights of the neural network are obtained by our systematic pro-
cedure, we need not adjust all the parameters in the network, as postulated by 
many researchers before us, in order to achieve convergence. We only need to 
fine-tune our biases which are fixed to lie in a certain given range, and con-
vergence to a solution with an acceptable minimum error is achieved. This 
greatly reduces the computational complexity of the given problem. We pro-
vide two important ODE examples, the first is a Ricatti type differential equa-
tion to which the procedure is applied, and this gave us perfect agreement 
with the exact solution. The second example however provided us with only 
an acceptable approximation to the exact solution. Our novel artificial neural 
networks procedure has demonstrated quite clearly the function approxima-
tion capabilities of ANN in the solution of nonlinear differential equations of 
Ricatti type. 
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1. Introduction 

We present a new perspective for obtaining solutions of initial value problems of 
Ricatti-type [1], using Artificial Neural Networks (ANN). This is an extension of 
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the procedure developed by Okereke [2]. We discover that neural network based 
model for the solution of ordinary differential equations (ODE) provides a num-
ber of advantages over standard numerical methods. Firstly, the neural network 
based solution is differentiable and is in closed analytic form. On the other hand 
most other techniques offer a discretized solution or a solution with limited dif-
ferentiability. Secondly, the neural network based method for solving differential 
equations provides a solution with very good generalization properties. The ma-
jor advantage here is that our method reduces considerably the computational 
complexity involved in weight updating, while maintaining satisfactory accura-
cy. 

1.1. Neural Network Structure 

A neural network is an inter-connection of processing elements, units or nodes, 
whose functionality resemble that of the human neurons. The processing ability 
of the network is stored in the connection strengths, simply called weights, which 
can be obtained by a process of adaptation to, a set of training patterns. Neural 
network methods can solve both ordinary and partial differential equations. Fur-
thermore, it relies on the function approximation property of feed forward neural 
networks which results in a solution written in a closed analytic form. This form 
employs a feed forward neural network as a basic approximation element. Train-
ing of the neural network can be done either by any optimization technique 
which in turn requires the computation of the gradient of the error with respect 
to the network parameters, by regression based model or by basis function ap-
proximation. 

1.2. Neural Networks are Universal Approximators 

Artificial neural network can make a nonlinear mapping from the inputs to the 
outputs of the corresponding system of neurons which is suitable for analyzing 
the problem defined by initial/boundary value problems that have no analytical 
solutions or which cannot be easily computed. One of the applications of the 
multilayer feed forward neural network is the global approximation of real va-
lued multivariable function in a closed analytic form. Namely such neural net-
works are universal approximators. It has been find out in the literature that 
multilayer feed forward neural networks with one hidden layer using arbitrary 
squashing functions are capable of approximating any Borel measurable func-
tion from one finite dimensional space to another with any desired degree of 
accuracy. This is made clear in the following theorem. 

1.3. Universal Approximation Theorem 

The universal approximation theorem for MLP was proved by Cybenko [3] and 
Hornik et al. [4] in 1989. Let nI  represent an n-dimensional unit cube containing 
all possible input samples ( )1 2, , , nx x x=x   with [ ]0,1ix ∈ , 1,2, ,i n=  . Let 
( )nC I  be the space of continuous functions on nI , given a continuous sigmo-
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id function ( )ϕ ⋅ , then the universal approximation theorem states that the fi-
nite sums of the form 

( )
2

3 2

1 0
, ,   1, 2, ,

N n

k k ki ki j
i j

y y w w x k mϕ
= =

 
= = = 

 
∑ ∑x w            (1) 

are dense in ( )nC I . This simply means that given any function ( )nf C∈ I  and 
0ε > , there is a sum ( ),y x w  of the above form that satisfies 

( ) ( ), ,  ny f ε− < ∀ ∈x w x x I .                  (2) 

1.4. Learning in Neural Networks 

A neural network has to be configured such that the application of a set of inputs 
produces the desired set of outputs. Various methods to set the strengths of the 
connection exist. One way is to set the weights explicitly, using priory know-
ledge. Another way is to train the neural network by feeding it, teaching patterns 
and letting it change its weights according to some learning rule. The term learn-
ing is widely used in the neural network field to describe this process; it might be 
formally described as: determining an optimized set of weights based on the sta-
tistics of the examples. The learning classification situations in neural networks 
may be classified into distinct sorts of learning: supervised learning, unsuper-
vised learning, reinforcement learning and competitive learning [5]. 

1.5. Gradient Computation with Respect to Network Inputs 

Next step is to compute the gradient with respect to input vectors, for this pur-
pose let us consider a multilayer perceptron (MLP) neural network [6] with n 
input units, a hidden layer with m sigmoid units and a linear output unit. For a 
given input vector ( )1 2, , , nx x x=x   the output of the network is written: 

( ) ( )
1

,
m

j j
i

N v zϕ
=

= ∑x p , 
1

n

j ji i j
i

z w x u
=

= +∑ .              (3) 

jiw  denotes the weight from input unit 𝑖𝑖 to the hidden unit 𝑗𝑗, jv  denotes 
weight from the hidden unit 𝑗𝑗 to the output unit, ju  denotes the biases, and 
( )jzϕ  is the sigmoid activation function. 
Now the derivative of networks output N with respect to input vector ix  is: 

( ) ( ) ( )1

1 1
,

m m

j j j ji
j ji i

N v z v w
x x

ϕ ϕ
= =

 ∂ ∂
= = ∂ ∂  

∑ ∑x p             (4) 

where ( ) ( )1ϕ ϕ≡ ∂ ∂x x . Similarly, the kth derivative of N is computed as;  

( )

1

m
kk k k

i j ji j
j

N x v w ϕ
=

∂ ∂ = ∑  

Where ( )j jzϕ ϕ≡  and ( )kϕ  denotes the kth order derivative of the sigmoid 
activation function. 

2. General Formulation for Differential Equations 

Let us consider the following general differential equations which represent both 
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ordinary and partial differential equations Majidzadeh [7]: 

( ) ( ) ( )( )2, , , , 0, ,G x x x x x Dψ ψ ψ∇ ∇ = ∀ ∈             (5) 

subject to some initial or boundary conditions, where ( )1 2, , , n
nx x x x= ∈  , 

nD ⊂   denotes the domain, and ( )xψ  is the unknown scalar-valued solution 
to be computed. Here, G is the function which defines the structure of the diffe-
rential equation and ∇  is a differential operator. Let ( ),t x pψ  denote the trail 
solution with parameters (weights, biases) p. Legaris et al. [8] gave the following 
as the general formulation for the solution of differential Equations (4) using 
ANN. Now, ( ),t x pψ  may be written as the sum of two terms 

( ) ( ) ( )( ), , ,t x p A x F x N x pψ = +                  (6) 

where ( )A x  satisfies initial or boundary condition and contains no adjustable 
parameters, whereas ( ),N x p  is the output of feed forward neural network 
with the parameters p and input data x. The function ( )( ), ,F x N x p  is actually 
the operational model of the neural network. Feed forward neural network (FFNN) 
converts differential equation problem to function approximation problem. The 
neural network ( ),N x p  is given by 

( ) ( )
1

,
m

j j
j

N x p v zσ
=

= ∑ , 1
n

j ji i jiz w x u
=

= +∑ .             (7) 

jiw  denotes the weight from input unit 𝑖𝑖 to the hidden unit j, jv  denotes 
weight from the hidden unit j to the output unit, ju  denotes the biases, and 
( )jzσ  is the sigmoid activation function. 

2.1. Neural Network Training 

The neural network weights determine the closeness of predicted outcome to the 
desired outcome. If the neural network weights are not able to make the correct 
prediction, then only the biases need to be adjusted. The basis function we shall 
apply in this work in training the neural network is the sigmoid activation func-
tion given by 

( ) ( ) 1
1 e jz

jzσ
−−= + .                       (8) 

2.2. Neural Network Model for Solving First Order Nonlinear ODE 

Let us consider the first order ordinary differential equation below 

( ) ( ) [ ], ,  ,x f x x a bψ ψ′ = ∈                     (9) 

with initial condition ( )a Aψ = . In this case we assume the function f is nonli-
near in its argument. The ANN trial solution may be written as 

( ) ( ), , ,t x p A xN x pψ = +                    (10) 

where ( ),N x p  is the neural output of the feed forward network with one input 
data x with parameters p. The trial solution ( ),t x pψ  satisfies the initial condi-
tion. To solve this problem using neural network (NN), we shall employ a NN 
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architecture with three layers. One input layer with one neuron; one hidden 
layer with n neurons and one output layer with one output unit, as depicted in 
Figure 1 below. 

Each neuron is connected to other neurons of the previous layer through 
adaptable synaptic weights 1 jw  and biases ju . Now, ( ) ( ), ,t i i ix p A x N x pψ = +  
with 

( ) ( )
1

, ,
n

j j j j j j
j

N x p v xw u z xw uσ
=

= + = +∑ .            (11) 

It is possible to have Multi-layered perceptrons with more than three layers, in 
which case we have more hidden layers [9] [10]. The most important application 
of multilayered perceptrons is their ability in function approximation. The Kol-
mogorov existence theorem guarantees that a three-layered perceptron with  
( )2 1n n +  nodes can compute any continuous function of n variables [11] [12]. 

The accuracy of the approximation depends only on the number of neurons in 
the hidden layer and not on the number of the hidden layers [13]. For the pur-
pose of numerical computation, as mentioned previously, our sigmoidal activa-
tion function ( )σ ⋅  for the hidden units of our neural network is taken to be; 

( ) ( ) 1
1 e zzσ

−−= +                        (12) 

with the property that; 

( ) ( ) ( )( )1z z zσ σ σ′ = − .                    (13) 

The trial solution ( ),t x pψ  satisfies the initial condition. We differentiate the 
trial solution ( ),t x pψ  to get 

( ) ( ) ( )d , d ,
, ,

d d
t x p N x p

N x p x
x x

ψ
= +                (14) 

We observe that; 

( ) ( ) ( )
1 1

d , d
d d

n n

j j j j j j
j j

N x p
v xw u v w z

x x
σ σ

= =

′= + =∑ ∑
 

( ) ( ) ( )( )
1

d ,
  1

d

n

j j j j
j

N x p
v w z z

x
σ σ

=

⇒ = −∑
 

 

 
Figure 1. Schematic for ( ),N x p . 
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For evaluating the derivative term in the right hand side of (32), we use equa-
tions (7) and (26)-(31). 

The error function for this case is formulated as; 

( ) ( ) ( )( )
2

1

d ,
, ,

d

n
t i

i t i
i i

x p
E p f x x p

x
ψ

ψ
=

 
= −  

 
∑ .            (15) 

Minimization of the above error function is considered as a procedure for 
training the neural network, where the error corresponding to each input vector 
x  is the value ( )f x  which has to become zero. In computing this error value, 

we require the network output as well as the derivatives of the output with re-
spect to the input vectors. Therefore, while computing error with respect to the 
network parameters, we need to compute not only the gradient of the network 
but also the gradient of the network derivatives with respect to its inputs [14]. 
This process can be quite tedious computationally, and in this work we avoid 
this cumbersome process by introducing the novel procedure outlined in this 
paper. 

3. Numerical Example 

The Riccati equation is a nonlinear ordinary differential equation of first order 
of the form: 

( ) ( ) ( ) ( )2y x p x y q x y r x′ = + +                  (16) 

where ( ) ( ) ( ), ,p x q x r x  are continuous functions of x. Neural network method 
can also solve this type of ODE. We show how our new approach can solve this 
type of ODE by redefining the neural network with respect to the form the ODE 
takes. Specifically, we consider the initial value problem: 

( ) ( ) ( ) ( ) [ ]22 1,  0 0,  0,1y x y x y x y x′ = − + = ∈ ,           (17) 

which was solved by Otadi and Mosleh (2011) [15]. The exact solution is  
( ) ( )2 tanh 2y x x= . 
The trial solution is given by ( ) ( ),ty x A x x pℵ= + . Applying the initial con-

ditions gives 0A = . Therefore ( ) ( ),ty x x x pℵ= . This solution obviously sa-
tisfies the given initial condition. We observe that in Equation (17), the term 

( )2y x  is what makes the ODE nonlinear. Also this term cannot be separated 
from ( )2y x . Therefore, we incorporate ( ) ( )22y x y x−  into the neural network 
to take care of the nonlinearity seen in the given differential equation. Thus, the 
new neural network becomes, 

( ) ( ) ( ) ( ) ( )2, 2 2
m m

j j j j j j
j j

x p v z z v z zℵ σ σ σ σ   = − = −   ∑ ∑      (18) 

The error to be minimized is 

( ) ( ) ( )
2

2

1

1 d , 2 , , 1
2 d

n

t i t i t i
i

E y x p y x p y x p
t=

  = − − +   
∑         (19) 

where the set { }, 1, ,ix i n=   are the discrete points in the interval [ ]0,1 . We 
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proceed as follows. 
To compute the weights , 1, 2,3jw j =  from the input layer to the hidden layer 

(Figure 1), we construct a function ( )xϑ  such that 1w fφ−= , f and φ . In par-
ticular, for ( )1 2 3, ,x x x=x , ( ) ( ) ( ) ( )( )T

1 2 3, ,f x x xϑ ϑ ϑ=x . Here N = 3 and the 
solution 1w fφ−=  is given by; 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1
1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 2

3 1 3 2 3 3 3 3

w x x x f
w x x x f
w x x x f

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

−
    
    =     
        

             (20) 

Here; 

( ) ( )
2

22
2

1 1

1 1exp , ,
2

N N
i

i i i
i i

x x
x x x x x

N N
ϕ σ

σ = =

 −
 = − = − =
 
 

∑ ∑       (21) 

The above is the so-called Gaussian Radial Basis function (GRBF) approxima-
tion model. To obtain the weights , 1, 2,3j jν =  from hidden layer to the output 
layer, we construct another function ( )xθ  such that 1 fν φ−= , where,  
( ) ( ) ( ) ( )( )T

1 2 3, ,f x x xθ θ θ=x , ( )1 2 3, ,x x x=x  and φ  is given in Equation 
(20). We only need to replace the jw ’s by the jν ’s, 1,2,3j = . 

The exact form of ( )f x  depends on the nature of a given differential equa-
tion. This will be made clear below. The nonlinear differential Equation (17) is 
rewritten as; ( ) ( ) ( )22 1y x y x y x′ − + = . 

We now form a linear function based on the default sign of the differential 
equation, i.e. ( )x ax bϑ = − , where a is the coefficient of the derivative of y and 
b is the coefficient of y (i.e. 1, 2a b= = − ). Thus; 

( ) ( ) ( ) ( ) ( )( ) ( )T T
1 2 32, , , 2.1, 2.2, 2.3x x f x x xϑ ϑ ϑ ϑ= + = =x ,  

for ( )T0.1,0.2,0.3=x . 

This we apply to get the weights from input layer to the hidden layer. Thus 
( )T 2.1, 2.2, 2.3f =  and 1w fφ−=  

1
1

2

3

1 0.94 0.78 2.1
  0.94 1 0.94 2.2

0.78 0.94 1 2.3

w
w
w

−
     
     ⇒ =     
         

              (22) 

Hence, the weights from the input layer to the hidden layer are 

1 1

2 2

3 3

41.335 73.437 36.79 2.1 9.858
73.437 139.062 73.437 2.2 , 17.187
36.79 73.437 41.335 2.3 10.767

w w
w w
w w

−        
        = − − = −        
        −        

    (23) 

The weights from input layer to the hidden layer are:  

1 2 39.858, 17.187, 10.767w w w= = − = . 
In order to get the weights from the hidden layer to the output layer, we now 

apply the forcing function which in this case is a constant function. That is, 
( ) 1xθ = , which is a constant function. 

( ) ( ) ( )( ) ( )T T
1 2 3

ˆ    , , 1,1,1f x x xθ θ θ⇒ = =              (24) 
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( )xθ  being the nonhomogeneous term. With 1 ˆv fφ−=  the weights from the 
hidden layer to the output layer are given by 

1
1

2

3

1 0.94 0.78 1 41.335 73.437 36.79 1
0.94 1 0.94 1 73.437 139.067 73.437 1
0.78 0.94 1 1 36.79 73.437 41.335 1

v
v
v

− −         
         = = − −         
         −          

1

2

3

4.687
 7.812

4.687

v
v
v

   
   ⇒ = −   
     

                     (25) 

Thus the weights from the hidden layer to the output layer are:  

1 2 34.687, 7.812, 4.687v v v= = − = . 
The biases are fixed between −20 and 20. We now train the network with the 

available parameters using our MathCAD 14 [16] algorithm (computer output) 
as follows: 

( )

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

1

w : 9.858   w : 17.187   w : 10.767   x : 1   
v : 4.687      v : 7.812     v : 4.687     u : 20      u : 10      u : 12.534
z : w x u 10.142     z : w x u 7.187     z : w x u 1.767

σ z : 1 ex

= = − = =

= = − = = − = = −

= ⋅ + = − = ⋅ + = − = ⋅ + = −

= + ( ) ( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )( )

1 15 4
1 2 2

1
3 3

1 1 1 2 2 2 3 3 3

p d

2
d p

p z 3.9388 10 ,  σ z : 1 exp z 7.5578 10 ,

σ z : 1 exp z 0.1459

: v σ z 2 σ z v σ z 2 σ z v σ z 2 σ z 1.256457

y x : x 1.256457,        y x : 2 tanh 2 1.256367

E : 0.5 y x y x 4.05 1

x

ℵ

ℵ

− −− −

−

= × = + = ×      

 = + = 
= ⋅ ⋅ − + ⋅ ⋅ − + ⋅ ⋅ − =

= ⋅ = = ⋅ ⋅ =

= ⋅ − = × 40−

 
The plots of the exact and predicted values in Table 1 are depicted in Figure 2 

below. 

Example 

We consider the initial value problem: 

( ]2 2 2 12,   0,   0,1
2

x y x y y x ′ + = = ∈ 
 

              (26) 

The exact solution is easily computed as: ( ) ( )( ) 13 48 1 4y x x x x
−

= − + . 
Our trial solution for the given problem is ( ) ( ),ty x A x x pℵ= + . Applying 

the initial conditions gives 

1 1 ,
2 2

A pℵ  = −  
 

. Therefore, ( ) ( ) ( )1
2

1 , ,
2ty x p x x pℵ ℵ= − +     (27) 

In Equation (26), the nonlinear term ( )2y x  is alone in the ode (i.e. dividing  
 
Table 1. Comparison of the results. 

Input data (X) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y Exact 0 0.19868 0.38967 0.56642 0.72434 0.86106 0.97623 1.07104 1.14761 1.20852 1.25637 

Y Pred 0 0.19867 0.38967 0.56642 0.72433 0.86106 0.97622 1.07103 1.14764 1.20849 1.25639 
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Figure 2. Plot of Y Exact and Y Predicted. 

 
out rightly by 2x ). Therefore, our neural network for this problem takes the 
form: 

( ) ( ) ( ) ( )
3 3

2, j j j j j
j j

x p v z v z zℵ σ σ σ = =  ∑ ∑             (28) 

We form algebraic equation of degree one with the default sign of the ode. 
Thus ( )x ax bϑ = + , ( 2 , 0a x b= = ). Hence  
( ) ( ) ( )T3 0.001,0.008,0.027x x fϑ = ⇒ =x , for ( )T0.1,0.2,0.3=x  
This we apply to get the weights from input layer to the hidden layer. We em-

ploy the GRBF here for the weights 1w fφ−= . Hence; 
1

1 1

2 2

3 3

1 0.94 0.78 0.001 0.447
0.94 1 0.94 0.008   0.944
0.78 0.94 1 0.027 0.565

w w
w w
w w

−
        
        = ⇒ = −        
                

     (29) 

The weights from input layer to the hidden layer are:  

1 2 30.447, 0.944, 0.565w w w= = − = . 
We now use the forcing function, a constant function in this case, to get the 

weights from the hidden layer to the output layer. That is,  
( ) ( ) ( )Tˆ2 2,2,2x fθ = ⇒ =x  for ( )T0.1,0.2,0.3=x . Hence, the weights  

1 ˆv fφ−=  from the hidden layer to the output layer are; 
1

1 1

2 2

3 3

1 0.94 0.78 2 9.375
0.94 1 0.94 2   15.625
0.78 0.94 1 2 9.375

v v
v v
v v

−
        
        = ⇒ = −        
                

       (30) 

The weights from the hidden layer to the output layer are:  

1 2 39.375, 15.625, 9.375v v v= = − = . 
The biases are fixed between −10 and 10. We now train the network with the 

available parameters using our MathCAD 14 algorithm as follows: 

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

w : 1.234   w : 2.725   w : 1.716   x : 1   
v : 9.375      v : 15.625     v : 9.375     u : 7      u : 4      u : 7
z : w x u 5.766     z : w x u 6.725     z : w x u 5.284

= = − = =

= = − = = − = − = −

= ⋅ + = − = ⋅ + = − = ⋅ + = −
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( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
1 1 2 2

1
3 3

22 2
1 1 1 2 2 2 3 3 3

22 2
1 1 2 2 3 3

3
p d

σ z : 1 exp z 0.998,   σ z : 1 exp z 0.995,

σ z : 1 exp z 0.998

0.5 : v σ 0.5 w u v σ 0.5 w u v σ 0.5 w u 3.199

: v σ z v σ z v σ z 3.01

y x : 0.5 0.5 x 1.41,     y x : 8 x

ℵ

ℵ

ℵ ℵ

− −

−

= + = = + =      

 = + = 

= ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅ + =

= ⋅ + ⋅ + ⋅ =

= − ⋅ + ⋅ = = ⋅( )( )
( ) ( )( )

14

2 5
d p

1 4 1.4,

E : 0.5 y x y x 5 10

x x
−

−

− + ⋅ =

= ⋅ − = ×

 

 
Table 2. Comparison of the results. 

Input data (X) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

Y Exact −9.881 −4.535 −2.359 −0.971 0 0.651 1.050 1.269 1.371 1.4 1.3869 

Y Pred −1.245 −0.953 −0.66 −0.368 −0.075 0.218 0.51 0.803 1.095 1.388 1.68 

 

 
Figure 3. Plot of Y Exact and Y Pred. 

 
The plots of the exact and predicted values in Table 2 are depicted in Figure 

3. 

4. Conclusion 

A novel Neural Network approach was developed recently by Okereke, for solv-
ing first and second order linear ordinary differential equations. In this article, 
the procedure is now extended in this article to investigate neural network solu-
tions to nonlinear differential equations of Ricatti-type. Specifically, we employ a 
feed-forward Multilayer Perceptron Neural Network (MLPNN), but avoid the 
standard back-propagation algorithm for updating the intrinsic weights. This 
greatly reduces the computational complexity of the given problem. For desired 
accuracy our objective is to minimize an error, which is a function of the net-
work parameters i.e., the weights and biases. Once the weights of the neural 
network are obtained by our systematic procedure, we need not adjust all the 
parameters in the network, as postulated by many researchers before us, in order 
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to achieve convergence. We only need to fine-tune our biases which are fixed to 
lie in a certain given interval, and convergence to a solution with an acceptable 
minimum error is achieved. The first example ODE of Ricatti type to which the 
procedure is applied gave us perfect agreement with the exact solution. The 
second example however provided us with only an acceptable approximation to 
the exact solution. This has demonstrated quite clearly the function approxima-
tion capabilities of ANN in the solution of nonlinear differential equations of 
Ricatti type. The above method still requires some refinement so that it can be 
generalized to solve any type of nonlinear differential equation including partial 
differential equations. 
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