
Applied Mathematics, 2021, 12, 919-930
https://www.scirp.org/journal/am

ISSN Online: 2152-7393
ISSN Print: 2152-7385

DOI: 10.4236/am.2021.1210060 Oct. 21, 2021 919 Applied Mathematics

Solving Riccati-Type Nonlinear Differential
Equations with Novel Artificial Neural
Networks

Roseline N. Okereke, Olaniyi S. Maliki

Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Nigeria

Abstract
In this study we investigate neural network solutions to nonlinear differential
equations of Ricatti-type. We employ a feed-forward Multilayer Perceptron
Neural Network (MLPNN), but avoid the standard back-propagation algo-
rithm for updating the intrinsic weights. Our objective is to minimize an er-
ror, which is a function of the network parameters i.e., the weights and biases.
Once the weights of the neural network are obtained by our systematic pro-
cedure, we need not adjust all the parameters in the network, as postulated by
many researchers before us, in order to achieve convergence. We only need to
fine-tune our biases which are fixed to lie in a certain given range, and con-
vergence to a solution with an acceptable minimum error is achieved. This
greatly reduces the computational complexity of the given problem. We pro-
vide two important ODE examples, the first is a Ricatti type differential equa-
tion to which the procedure is applied, and this gave us perfect agreement
with the exact solution. The second example however provided us with only
an acceptable approximation to the exact solution. Our novel artificial neural
networks procedure has demonstrated quite clearly the function approxima-
tion capabilities of ANN in the solution of nonlinear differential equations of
Ricatti type.

Keywords
Ricatti ODE, MLPNN, GRBF, Network Training, MathCAD 14

1. Introduction

We present a new perspective for obtaining solutions of initial value problems of
Ricatti-type [1], using Artificial Neural Networks (ANN). This is an extension of

How to cite this paper: Okereke, R.N. and
Maliki, O.S. (2021) Solving Riccati-Type Non-
linear Differential Equations with Novel Ar-
tificial Neural Networks. Applied Mathemat-
ics, 12, 919-930.
https://doi.org/10.4236/am.2021.1210060

Received: November 19, 2020
Accepted: October 18, 2021
Published: October 21, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/am
https://doi.org/110.4236/am.2021.1210060
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2021.1210060
http://creativecommons.org/licenses/by/4.0/

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 920 Applied Mathematics

the procedure developed by Okereke [2]. We discover that neural network based
model for the solution of ordinary differential equations (ODE) provides a num-
ber of advantages over standard numerical methods. Firstly, the neural network
based solution is differentiable and is in closed analytic form. On the other hand
most other techniques offer a discretized solution or a solution with limited dif-
ferentiability. Secondly, the neural network based method for solving differential
equations provides a solution with very good generalization properties. The ma-
jor advantage here is that our method reduces considerably the computational
complexity involved in weight updating, while maintaining satisfactory accura-
cy.

1.1. Neural Network Structure

A neural network is an inter-connection of processing elements, units or nodes,
whose functionality resemble that of the human neurons. The processing ability
of the network is stored in the connection strengths, simply called weights, which
can be obtained by a process of adaptation to, a set of training patterns. Neural
network methods can solve both ordinary and partial differential equations. Fur-
thermore, it relies on the function approximation property of feed forward neural
networks which results in a solution written in a closed analytic form. This form
employs a feed forward neural network as a basic approximation element. Train-
ing of the neural network can be done either by any optimization technique
which in turn requires the computation of the gradient of the error with respect
to the network parameters, by regression based model or by basis function ap-
proximation.

1.2. Neural Networks are Universal Approximators

Artificial neural network can make a nonlinear mapping from the inputs to the
outputs of the corresponding system of neurons which is suitable for analyzing
the problem defined by initial/boundary value problems that have no analytical
solutions or which cannot be easily computed. One of the applications of the
multilayer feed forward neural network is the global approximation of real va-
lued multivariable function in a closed analytic form. Namely such neural net-
works are universal approximators. It has been find out in the literature that
multilayer feed forward neural networks with one hidden layer using arbitrary
squashing functions are capable of approximating any Borel measurable func-
tion from one finite dimensional space to another with any desired degree of
accuracy. This is made clear in the following theorem.

1.3. Universal Approximation Theorem

The universal approximation theorem for MLP was proved by Cybenko [3] and
Hornik et al. [4] in 1989. Let nI represent an n-dimensional unit cube containing
all possible input samples ()1 2, , , nx x x=x  with []0,1ix ∈ , 1,2, ,i n=  . Let
()nC I be the space of continuous functions on nI , given a continuous sigmo-

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 921 Applied Mathematics

id function ()ϕ ⋅ , then the universal approximation theorem states that the fi-
nite sums of the form

()
2

3 2

1 0
, , 1, 2, ,

N n

k k ki ki j
i j

y y w w x k mϕ
= =

 
= = = 

 
∑ ∑x w  (1)

are dense in ()nC I . This simply means that given any function ()nf C∈ I and
0ε > , there is a sum (),y x w of the above form that satisfies

() (), , ny f ε− < ∀ ∈x w x x I . (2)

1.4. Learning in Neural Networks

A neural network has to be configured such that the application of a set of inputs
produces the desired set of outputs. Various methods to set the strengths of the
connection exist. One way is to set the weights explicitly, using priory know-
ledge. Another way is to train the neural network by feeding it, teaching patterns
and letting it change its weights according to some learning rule. The term learn-
ing is widely used in the neural network field to describe this process; it might be
formally described as: determining an optimized set of weights based on the sta-
tistics of the examples. The learning classification situations in neural networks
may be classified into distinct sorts of learning: supervised learning, unsuper-
vised learning, reinforcement learning and competitive learning [5].

1.5. Gradient Computation with Respect to Network Inputs

Next step is to compute the gradient with respect to input vectors, for this pur-
pose let us consider a multilayer perceptron (MLP) neural network [6] with n
input units, a hidden layer with m sigmoid units and a linear output unit. For a
given input vector ()1 2, , , nx x x=x  the output of the network is written:

() ()
1

,
m

j j
i

N v zϕ
=

= ∑x p ,
1

n

j ji i j
i

z w x u
=

= +∑ . (3)

jiw denotes the weight from input unit 𝑖𝑖 to the hidden unit 𝑗𝑗, jv denotes
weight from the hidden unit 𝑗𝑗 to the output unit, ju denotes the biases, and
()jzϕ is the sigmoid activation function.
Now the derivative of networks output N with respect to input vector ix is:

() () ()1

1 1
,

m m

j j j ji
j ji i

N v z v w
x x

ϕ ϕ
= =

 ∂ ∂
= = ∂ ∂  

∑ ∑x p (4)

where () ()1ϕ ϕ≡ ∂ ∂x x . Similarly, the kth derivative of N is computed as;

()

1

m
kk k k

i j ji j
j

N x v w ϕ
=

∂ ∂ = ∑

Where ()j jzϕ ϕ≡ and ()kϕ denotes the kth order derivative of the sigmoid
activation function.

2. General Formulation for Differential Equations

Let us consider the following general differential equations which represent both

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 922 Applied Mathematics

ordinary and partial differential equations Majidzadeh [7]:

() () ()()2, , , , 0, ,G x x x x x Dψ ψ ψ∇ ∇ = ∀ ∈ (5)

subject to some initial or boundary conditions, where ()1 2, , , n
nx x x x= ∈  ,

nD ⊂  denotes the domain, and ()xψ is the unknown scalar-valued solution
to be computed. Here, G is the function which defines the structure of the diffe-
rential equation and ∇ is a differential operator. Let (),t x pψ denote the trail
solution with parameters (weights, biases) p. Legaris et al. [8] gave the following
as the general formulation for the solution of differential Equations (4) using
ANN. Now, (),t x pψ may be written as the sum of two terms

() () ()(), , ,t x p A x F x N x pψ = + (6)

where ()A x satisfies initial or boundary condition and contains no adjustable
parameters, whereas (),N x p is the output of feed forward neural network
with the parameters p and input data x. The function ()(), ,F x N x p is actually
the operational model of the neural network. Feed forward neural network (FFNN)
converts differential equation problem to function approximation problem. The
neural network (),N x p is given by

() ()
1

,
m

j j
j

N x p v zσ
=

= ∑ , 1
n

j ji i jiz w x u
=

= +∑ . (7)

jiw denotes the weight from input unit 𝑖𝑖 to the hidden unit j, jv denotes
weight from the hidden unit j to the output unit, ju denotes the biases, and
()jzσ is the sigmoid activation function.

2.1. Neural Network Training

The neural network weights determine the closeness of predicted outcome to the
desired outcome. If the neural network weights are not able to make the correct
prediction, then only the biases need to be adjusted. The basis function we shall
apply in this work in training the neural network is the sigmoid activation func-
tion given by

() () 1
1 e jz

jzσ
−−= + . (8)

2.2. Neural Network Model for Solving First Order Nonlinear ODE

Let us consider the first order ordinary differential equation below

() () [], , ,x f x x a bψ ψ′ = ∈ (9)

with initial condition ()a Aψ = . In this case we assume the function f is nonli-
near in its argument. The ANN trial solution may be written as

() (), , ,t x p A xN x pψ = + (10)

where (),N x p is the neural output of the feed forward network with one input
data x with parameters p. The trial solution (),t x pψ satisfies the initial condi-
tion. To solve this problem using neural network (NN), we shall employ a NN

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 923 Applied Mathematics

architecture with three layers. One input layer with one neuron; one hidden
layer with n neurons and one output layer with one output unit, as depicted in
Figure 1 below.

Each neuron is connected to other neurons of the previous layer through
adaptable synaptic weights 1 jw and biases ju . Now, () (), ,t i i ix p A x N x pψ = +
with

() ()
1

, ,
n

j j j j j j
j

N x p v xw u z xw uσ
=

= + = +∑ . (11)

It is possible to have Multi-layered perceptrons with more than three layers, in
which case we have more hidden layers [9] [10]. The most important application
of multilayered perceptrons is their ability in function approximation. The Kol-
mogorov existence theorem guarantees that a three-layered perceptron with
()2 1n n + nodes can compute any continuous function of n variables [11] [12].

The accuracy of the approximation depends only on the number of neurons in
the hidden layer and not on the number of the hidden layers [13]. For the pur-
pose of numerical computation, as mentioned previously, our sigmoidal activa-
tion function ()σ ⋅ for the hidden units of our neural network is taken to be;

() () 1
1 e zzσ

−−= + (12)

with the property that;

() () ()()1z z zσ σ σ′ = − . (13)

The trial solution (),t x pψ satisfies the initial condition. We differentiate the
trial solution (),t x pψ to get

() () ()d , d ,
, ,

d d
t x p N x p

N x p x
x x

ψ
= + (14)

We observe that;

() () ()
1 1

d , d
d d

n n

j j j j j j
j j

N x p
v xw u v w z

x x
σ σ

= =

′= + =∑ ∑

() () ()()
1

d ,
 1

d

n

j j j j
j

N x p
v w z z

x
σ σ

=

⇒ = −∑

Figure 1. Schematic for (),N x p .

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 924 Applied Mathematics

For evaluating the derivative term in the right hand side of (32), we use equa-
tions (7) and (26)-(31).

The error function for this case is formulated as;

() () ()()
2

1

d ,
, ,

d

n
t i

i t i
i i

x p
E p f x x p

x
ψ

ψ
=

 
= −  

 
∑ . (15)

Minimization of the above error function is considered as a procedure for
training the neural network, where the error corresponding to each input vector
x is the value ()f x which has to become zero. In computing this error value,

we require the network output as well as the derivatives of the output with re-
spect to the input vectors. Therefore, while computing error with respect to the
network parameters, we need to compute not only the gradient of the network
but also the gradient of the network derivatives with respect to its inputs [14].
This process can be quite tedious computationally, and in this work we avoid
this cumbersome process by introducing the novel procedure outlined in this
paper.

3. Numerical Example

The Riccati equation is a nonlinear ordinary differential equation of first order
of the form:

() () () ()2y x p x y q x y r x′ = + + (16)

where () () (), ,p x q x r x are continuous functions of x. Neural network method
can also solve this type of ODE. We show how our new approach can solve this
type of ODE by redefining the neural network with respect to the form the ODE
takes. Specifically, we consider the initial value problem:

() () () () []22 1, 0 0, 0,1y x y x y x y x′ = − + = ∈ , (17)

which was solved by Otadi and Mosleh (2011) [15]. The exact solution is
() ()2 tanh 2y x x= .
The trial solution is given by () (),ty x A x x pℵ= + . Applying the initial con-

ditions gives 0A = . Therefore () (),ty x x x pℵ= . This solution obviously sa-
tisfies the given initial condition. We observe that in Equation (17), the term

()2y x is what makes the ODE nonlinear. Also this term cannot be separated
from ()2y x . Therefore, we incorporate () ()22y x y x− into the neural network
to take care of the nonlinearity seen in the given differential equation. Thus, the
new neural network becomes,

() () () () ()2, 2 2
m m

j j j j j j
j j

x p v z z v z zℵ σ σ σ σ   = − = −   ∑ ∑ (18)

The error to be minimized is

() () ()
2

2

1

1 d , 2 , , 1
2 d

n

t i t i t i
i

E y x p y x p y x p
t=

  = − − +   
∑ (19)

where the set { }, 1, ,ix i n=  are the discrete points in the interval []0,1 . We

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 925 Applied Mathematics

proceed as follows.
To compute the weights , 1, 2,3jw j = from the input layer to the hidden layer

(Figure 1), we construct a function ()xϑ such that 1w fφ−= , f and φ . In par-
ticular, for ()1 2 3, ,x x x=x , () () () ()()T

1 2 3, ,f x x xϑ ϑ ϑ=x . Here N = 3 and the
solution 1w fφ−= is given by;

() () ()
() () ()
() () ()

1
1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 2

3 1 3 2 3 3 3 3

w x x x f
w x x x f
w x x x f

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

−
    
    =     
        

 (20)

Here;

() ()
2

22
2

1 1

1 1exp , ,
2

N N
i

i i i
i i

x x
x x x x x

N N
ϕ σ

σ = =

 −
 = − = − =
 
 

∑ ∑ (21)

The above is the so-called Gaussian Radial Basis function (GRBF) approxima-
tion model. To obtain the weights , 1, 2,3j jν = from hidden layer to the output
layer, we construct another function ()xθ such that 1 fν φ−= , where,
() () () ()()T

1 2 3, ,f x x xθ θ θ=x , ()1 2 3, ,x x x=x and φ is given in Equation
(20). We only need to replace the jw ’s by the jν ’s, 1,2,3j = .

The exact form of ()f x depends on the nature of a given differential equa-
tion. This will be made clear below. The nonlinear differential Equation (17) is
rewritten as; () () ()22 1y x y x y x′ − + = .

We now form a linear function based on the default sign of the differential
equation, i.e. ()x ax bϑ = − , where a is the coefficient of the derivative of y and
b is the coefficient of y (i.e. 1, 2a b= = −). Thus;

() () () () ()() ()T T
1 2 32, , , 2.1, 2.2, 2.3x x f x x xϑ ϑ ϑ ϑ= + = =x ,

for ()T0.1,0.2,0.3=x .

This we apply to get the weights from input layer to the hidden layer. Thus
()T 2.1, 2.2, 2.3f = and 1w fφ−=

1
1

2

3

1 0.94 0.78 2.1
 0.94 1 0.94 2.2

0.78 0.94 1 2.3

w
w
w

−
     
     ⇒ =     
         

 (22)

Hence, the weights from the input layer to the hidden layer are

1 1

2 2

3 3

41.335 73.437 36.79 2.1 9.858
73.437 139.062 73.437 2.2 , 17.187
36.79 73.437 41.335 2.3 10.767

w w
w w
w w

−        
        = − − = −        
        −        

 (23)

The weights from input layer to the hidden layer are:

1 2 39.858, 17.187, 10.767w w w= = − = .
In order to get the weights from the hidden layer to the output layer, we now

apply the forcing function which in this case is a constant function. That is,
() 1xθ = , which is a constant function.

() () ()() ()T T
1 2 3

ˆ , , 1,1,1f x x xθ θ θ⇒ = = (24)

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 926 Applied Mathematics

()xθ being the nonhomogeneous term. With 1 ˆv fφ−= the weights from the
hidden layer to the output layer are given by

1
1

2

3

1 0.94 0.78 1 41.335 73.437 36.79 1
0.94 1 0.94 1 73.437 139.067 73.437 1
0.78 0.94 1 1 36.79 73.437 41.335 1

v
v
v

− −         
         = = − −         
         −        

1

2

3

4.687
 7.812

4.687

v
v
v

   
   ⇒ = −   
     

 (25)

Thus the weights from the hidden layer to the output layer are:

1 2 34.687, 7.812, 4.687v v v= = − = .
The biases are fixed between −20 and 20. We now train the network with the

available parameters using our MathCAD 14 [16] algorithm (computer output)
as follows:

()

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

1

w : 9.858 w : 17.187 w : 10.767 x : 1
v : 4.687 v : 7.812 v : 4.687 u : 20 u : 10 u : 12.534
z : w x u 10.142 z : w x u 7.187 z : w x u 1.767

σ z : 1 ex

= = − = =

= = − = = − = = −

= ⋅ + = − = ⋅ + = − = ⋅ + = −

= + () () ()

() ()
() ()() () ()() () ()()

() () ()
() ()()

1 15 4
1 2 2

1
3 3

1 1 1 2 2 2 3 3 3

p d

2
d p

p z 3.9388 10 , σ z : 1 exp z 7.5578 10 ,

σ z : 1 exp z 0.1459

: v σ z 2 σ z v σ z 2 σ z v σ z 2 σ z 1.256457

y x : x 1.256457, y x : 2 tanh 2 1.256367

E : 0.5 y x y x 4.05 1

x

ℵ

ℵ

− −− −

−

= × = + = ×      

 = + = 
= ⋅ ⋅ − + ⋅ ⋅ − + ⋅ ⋅ − =

= ⋅ = = ⋅ ⋅ =

= ⋅ − = × 40−

The plots of the exact and predicted values in Table 1 are depicted in Figure 2

below.

Example

We consider the initial value problem:

(]2 2 2 12, 0, 0,1
2

x y x y y x ′ + = = ∈ 
 

 (26)

The exact solution is easily computed as: () ()() 13 48 1 4y x x x x
−

= − + .
Our trial solution for the given problem is () (),ty x A x x pℵ= + . Applying

the initial conditions gives

1 1 ,
2 2

A pℵ  = −  
 

. Therefore, () () ()1
2

1 , ,
2ty x p x x pℵ ℵ= − + (27)

In Equation (26), the nonlinear term ()2y x is alone in the ode (i.e. dividing

Table 1. Comparison of the results.

Input data (X) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y Exact 0 0.19868 0.38967 0.56642 0.72434 0.86106 0.97623 1.07104 1.14761 1.20852 1.25637

Y Pred 0 0.19867 0.38967 0.56642 0.72433 0.86106 0.97622 1.07103 1.14764 1.20849 1.25639

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 927 Applied Mathematics

Figure 2. Plot of Y Exact and Y Predicted.

out rightly by 2x). Therefore, our neural network for this problem takes the
form:

() () () ()
3 3

2, j j j j j
j j

x p v z v z zℵ σ σ σ = =  ∑ ∑ (28)

We form algebraic equation of degree one with the default sign of the ode.
Thus ()x ax bϑ = + , (2 , 0a x b= =). Hence
() () ()T3 0.001,0.008,0.027x x fϑ = ⇒ =x , for ()T0.1,0.2,0.3=x
This we apply to get the weights from input layer to the hidden layer. We em-

ploy the GRBF here for the weights 1w fφ−= . Hence;
1

1 1

2 2

3 3

1 0.94 0.78 0.001 0.447
0.94 1 0.94 0.008 0.944
0.78 0.94 1 0.027 0.565

w w
w w
w w

−
        
        = ⇒ = −        
                

 (29)

The weights from input layer to the hidden layer are:

1 2 30.447, 0.944, 0.565w w w= = − = .
We now use the forcing function, a constant function in this case, to get the

weights from the hidden layer to the output layer. That is,
() () ()Tˆ2 2,2,2x fθ = ⇒ =x for ()T0.1,0.2,0.3=x . Hence, the weights

1 ˆv fφ−= from the hidden layer to the output layer are;
1

1 1

2 2

3 3

1 0.94 0.78 2 9.375
0.94 1 0.94 2 15.625
0.78 0.94 1 2 9.375

v v
v v
v v

−
        
        = ⇒ = −        
                

 (30)

The weights from the hidden layer to the output layer are:

1 2 39.375, 15.625, 9.375v v v= = − = .
The biases are fixed between −10 and 10. We now train the network with the

available parameters using our MathCAD 14 algorithm as follows:

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

w : 1.234 w : 2.725 w : 1.716 x : 1
v : 9.375 v : 15.625 v : 9.375 u : 7 u : 4 u : 7
z : w x u 5.766 z : w x u 6.725 z : w x u 5.284

= = − = =

= = − = = − = − = −

= ⋅ + = − = ⋅ + = − = ⋅ + = −

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 928 Applied Mathematics

() () () ()

() ()
() () () ()

() () ()

() () ()

1 1
1 1 2 2

1
3 3

22 2
1 1 1 2 2 2 3 3 3

22 2
1 1 2 2 3 3

3
p d

σ z : 1 exp z 0.998, σ z : 1 exp z 0.995,

σ z : 1 exp z 0.998

0.5 : v σ 0.5 w u v σ 0.5 w u v σ 0.5 w u 3.199

: v σ z v σ z v σ z 3.01

y x : 0.5 0.5 x 1.41, y x : 8 x

ℵ

ℵ

ℵ ℵ

− −

−

= + = = + =      

 = + = 

= ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅ + =

= ⋅ + ⋅ + ⋅ =

= − ⋅ + ⋅ = = ⋅()()
() ()()

14

2 5
d p

1 4 1.4,

E : 0.5 y x y x 5 10

x x
−

−

− + ⋅ =

= ⋅ − = ×

Table 2. Comparison of the results.

Input data (X) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Y Exact −9.881 −4.535 −2.359 −0.971 0 0.651 1.050 1.269 1.371 1.4 1.3869

Y Pred −1.245 −0.953 −0.66 −0.368 −0.075 0.218 0.51 0.803 1.095 1.388 1.68

Figure 3. Plot of Y Exact and Y Pred.

The plots of the exact and predicted values in Table 2 are depicted in Figure

3.

4. Conclusion

A novel Neural Network approach was developed recently by Okereke, for solv-
ing first and second order linear ordinary differential equations. In this article,
the procedure is now extended in this article to investigate neural network solu-
tions to nonlinear differential equations of Ricatti-type. Specifically, we employ a
feed-forward Multilayer Perceptron Neural Network (MLPNN), but avoid the
standard back-propagation algorithm for updating the intrinsic weights. This
greatly reduces the computational complexity of the given problem. For desired
accuracy our objective is to minimize an error, which is a function of the net-
work parameters i.e., the weights and biases. Once the weights of the neural
network are obtained by our systematic procedure, we need not adjust all the
parameters in the network, as postulated by many researchers before us, in order

https://doi.org/110.4236/am.2021.1210060

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 929 Applied Mathematics

to achieve convergence. We only need to fine-tune our biases which are fixed to
lie in a certain given interval, and convergence to a solution with an acceptable
minimum error is achieved. The first example ODE of Ricatti type to which the
procedure is applied gave us perfect agreement with the exact solution. The
second example however provided us with only an acceptable approximation to
the exact solution. This has demonstrated quite clearly the function approxima-
tion capabilities of ANN in the solution of nonlinear differential equations of
Ricatti type. The above method still requires some refinement so that it can be
generalized to solve any type of nonlinear differential equation including partial
differential equations.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Polyanin, A.D. and Zaitsev, V.F. (2003) Handbook of Exact Solutions for Ordinary

Differential Equations. 2nd Edition, Chapman & Hall/CRC, Boca Raton.

[2] Okereke, R.N. (2019) A New Perspective to the Solution of Ordinary Differential
Equations Using Artificial Neural Networks. Ph.D Dissertation, Mathematics De-
partment, Michael Okpara University of Agriculture, Umudike.

[3] Cybenco, G. (1989) Approximation by Superposition of a Sigmoidal Function. Ma-
thematics of Control, Signals and Systems, 2, 303-314.
https://doi.org/10.1007/BF02551274

[4] Hornic, K., Stinchcombe, M. and White, H. (1989) Multilayer Feed forward Net-
works Are Universal Approximators. Neural Networks, 2, 359-366.
https://doi.org/10.1016/0893-6080(89)90020-8

[5] Graupe, D. (2007) Principles of Artificial Neural Networks. Vol. 6, 2nd Edition,
World Scientific Publishing Co. Pte. Ltd., Singapore.

[6] Rumelhart, D.E. and McClelland, J.L. (1986) Parallel Distributed Processing, Ex-
plorations in the Microstructure of Cognition I and II. MIT Press, Cambridge.
https://doi.org/10.7551/mitpress/5236.001.0001

[7] Majidzadeh, K. (2011) Inverse Problem with Respect to Domain and Artificial Neural
Network Algorithm for the Solution. Mathematical Problems in Engineering, 2011,
Article ID: 145608, 16 p. https://doi.org/10.1155/2011/145608

[8] Lagaris, I.E., Likas, A.C. and Fotiadis D.I. (1997) Artificial Neural Network for
Solving Ordinary and Partial Differential Equations. arXiv: physics/9705023v1.

[9] Chen, R.T.Q., Rubanova, Y., Bettencourt, J. and Duvenaud, D. (2018) Neural Ordi-
nary Differential Equations. arXiv: 1806.07366v1.

[10] Mall, S. and Chakraverty, S. (2013) Comparison of Artificial Neural Network Ar-
chitecture in Solving Ordinary Differential Equations. Advances in Artificial Neural
Systems, 2013, Article ID: 181895. https://doi.org/10.1155/2013/181895

[11] Gurney, K. (1997) An Intorduction to Neural Networks. UCL Press, London.

[12] Samath, J.A., Kumar, P.S. and Begum, A. (2010) Solution of Linear Electrical Circuit
Problem Using Neural Networks. International Journal of Computer Applications,
2, 6-13. https://doi.org/10.5120/618-869

https://doi.org/110.4236/am.2021.1210060
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/10.1155/2011/145608
https://doi.org/10.1155/2013/181895
https://doi.org/10.5120/618-869

R. N. Okereke, O. S. Maliki

DOI: 10.4236/am.2021.1210060 930 Applied Mathematics

[13] Werbos, P.J. (1974) Beyond Recognition, New Tools for Prediction and Analysis in
the Behavioural Sciences. Ph.D. Thesis, Harvard University, Cambridge.

[14] Manoj, K. and Yadav, N. (2011) Multilayer Perceptrons and Radial Basis Function
Neural Network Methods for the Solution of Differential Equations, A Survey.
Computers and Mathematics with Applications, 62, 3796-3811.
https://doi.org/10.1016/j.camwa.2011.09.028

[15] Otadi, M. and Mosleh, M. (2011) Numerical Solution of Quadratic Riccati Differen-
tial Equations by Neural Network. Mathematical Sciences, 5, 249-257.

[16] PTC (Parametric Technology Corporation) (2007) Mathcad Version 14.
http://communications@ptc.com

https://doi.org/110.4236/am.2021.1210060
https://doi.org/10.1016/j.camwa.2011.09.028
http://communications@ptc.com

	Solving Riccati-Type Nonlinear Differential Equations with Novel Artificial Neural Networks
	Abstract
	Keywords
	1. Introduction
	1.1. Neural Network Structure
	1.2. Neural Networks are Universal Approximators
	1.3. Universal Approximation Theorem
	1.4. Learning in Neural Networks
	1.5. Gradient Computation with Respect to Network Inputs

	2. General Formulation for Differential Equations
	2.1. Neural Network Training
	2.2. Neural Network Model for Solving First Order Nonlinear ODE

	3. Numerical Example
	Example

	4. Conclusion
	Conflicts of Interest
	References

