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Simple Summary: Various types of cancers can lead to brain metastasis. Treatment strategies have
improved substantially in the past decade, leading to longer survival in many cases, but also to new
diagnostic challenges. Being able to locate those parts of a lesion suspicious for brain metastasis
that contain the highest concentrations of viable tumor cells can be crucial, e.g., to obtain a precise
diagnosis via targeted biopsies or to differentiate recurring tumor from dead tissue after treatment.
Positron emission tomography (PET) imaging has the potential to provide this kind of information.
However, studies relating PET findings to actual tissue properties are sparse. The aim of this study
was to investigate the association of PET imaging with microscopic tissue properties in samples
obtained neurosurgically from brain metastases. Our findings can improve the planning and yield
of biopsies from brain metastases, and they may inform future studies aimed at improving the
discrimination of recurring from dead tumor in treated brain metastases using PET.

Abstract: Amino acid positron emission tomography (PET) has been employed in the management
of brain metastases. Yet, histopathological correlates of PET findings remain poorly understood. We
investigated the relationship of O—(2—[18F]Fluoroethyl)—L—tyrosine (['8F]FET) PET, magnetic resonance
imaging (MRI), and histology in brain metastases. Fifteen patients undergoing brain metastasis
resection were included prospectively. Using intraoperative navigation, 39 targeted biopsies were
obtained from parts of the metastases that were either PET-positive or negative and MRI-positive or
negative. Tumor and necrosis content, proliferation index, lymphocyte infiltration, and vasculariza-
tion were determined histopathologically. ['8F]FET PET had higher specificity than MRI (66% vs.
56%) and increased sensitivity for tumor from 73% to 93% when combined with MRI. Tumor content
per sample increased with PET uptake (rs = 0.3, p = 0.045), whereas necrosis content decreased
(rs = —0.4, p = 0.014). PET-positive samples had more tumor (median: 75%; interquartile range:
10-97%; p = 0.016) than PET-negative samples. The other investigated histological properties were
not correlated with ['8F]FET PET intensity. Tumors were heterogeneous at the levels of imaging and
histology. ['8F]FET PET can be a valuable tool in the management of brain metastases. In biopsies,
one should aim for PET hotspots to increase the chance for retrieval of samples with high tumor
cell concentrations. Multiple biopsies should be performed to account for intra-tumor heterogeneity.
PET could be useful for differentiating treatment-related changes (e.g., radiation necrosis) from
tumor recurrence.

Keywords: brain metastasis; amino acid positron-emission tomography; targeted biopsy; tumor
heterogeneity; radiation necrosis; pseudoprogression
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1. Introduction

In advanced neoplastic disease, brain metastases are common, and metastasis is the
most frequent type of brain cancer [1]. As diagnostic tools and treatment strategies have
improved, the number of cancer patients who are diagnosed with brain metastases has
increased. Novel systemic treatment options, such as targeted therapy or immunotherapy,
have been able to control intracranial metastases at least in some forms of cancer, and
more patients survive longer with brain metastases than before [2]. Long-term follow-up
of these patients usually includes MRI with contrast enhancement, which is the corner-
stone of diagnostics in brain metastasis. However, it has some limitations, such as low
specificity [3-5]. This can be problematic in confirming the initial diagnosis as well as
during treatment monitoring. Amino acid positron emission tomography (PET), such as
O—(2—[18F]Fluoroethyl)—L-tyrosine (['8F]FET) PET [6], is thought to reveal metastasis-specific
uptake of radiolabeled amino acids that is mediated by L-type amino acid transporters [7].
This type of molecular imaging has been well established for primary brain tumors [§],
and it has also been proposed to provide useful diagnostic information on brain metas-
tases in addition to MRI imaging [7,9,10]; for a recent review, see [11]. For example, the
differentiation of treatment effects (such as post-radiation tissue changes or pseudopro-
gression following immunotherapy) from tumor recurrence appears to be possible with
high specificity and sensitivity, and several studies have found that amino acid PET might
even be more useful than MRI for this purpose [12-16]. However, in most of these studies,
the histological confirmation of diagnosis and additional imaging were not available for
the majority of cases.

Additional clinical applications of amino acid PET are possible. For example, the
identification of biopsy targets most likely providing viable tumor tissue yielding a valid
diagnosis could be supported by pre-biopsy ['®F]FET PET imaging, as has been shown
for amino acid PET in glioma [17]. This could be helpful not only when histological
confirmation is required in suspected newly diagnosed brain metastasis but also when
recurrent brain metastasis must be distinguished histologically from post-therapeutic
reactive changes, such as radiation necrosis [18]. Thus, even though not recommended
by current guidelines, the employment of amino acid PET for biopsy planning might
prove useful.

Unlike gliomas, brain metastases are thought to be well-delineated on contrast-
enhanced MRI [11]. However, there appears to be a substantial mismatch between tumor
volume defined by contrast enhancement and tumor volume defined by [**F]FET up-
take [19]. It is unclear whether these parts of the metastases differ from those that are
congruent in both imaging modalities and whether imaging-based intratumor heterogene-
ity is also associated with histological intratumor heterogeneity.

To date, little is known about the histopathological changes underlying or accompa-
nying amino acid uptake imaged by PET in brain metastases. In this prospective study, we
investigated the relationship between ['8F]FET uptake (as measured by PET imaging), MRI
contrast enhancement, and histological tumor tissue properties using targeted biopsies
from brain metastases.

We found that amino acid PET is a helpful diagnostic tool in the management of
brain metastases. Amino acid PET in addition to MRI increased sensitivity for tumor in
targeted biopsies, and high PET intensity was associated with high tumor and low necrosis
content. Consequently, amino acid PET can guide biopsies to parts of the lesion that are
more likely to yield high tumor cell concentrations, and it has the potential to differentiate
tumor recurrence from treatment-related changes, such as radiation necrosis.

2. Results

All 15 patients (mean age: 59.3 years; range: 45-74 years; eight females, seven males)
underwent open resection of one cerebral mass lesion suspicious for metastatic disease.
Four of these lesions had been irradiated before. MRI and ['®F]FET PET imaging were ob-
tained prior to surgery. Virtually all lesions were heterogeneous at the level of imaging, with
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subvolumes that were PET-positive (i.e., mean tumor-to-background ratio (TBRmean) > 1.6
in radiation-naive lesions and TBRyean > 2.0 in radiated lesions) or negative and MRI-

positive (i.e., contrast-enhancing) or negative (Figure 1).

Figure 1. Targeted biopsies from brain metastases. (a) Post-gadolinium magnetic resonance imaging
(MRI) (T1) showing a contrast-enhancing mass lesion in the right central region of a patient with
malignant melanoma; (b,c) ['®F]FET positron emission tomography (PET) images corresponding to
the imaging planes marked in a (upper dashed line: b; lower dashed line: ¢) showing elevated tracer
uptake in a subvolume of the lesion and low tracer uptake in another part of the lesion. The black
circle in a and b indicates the location of a biopsy from a “MRI-positive, PET-positive” part of the
lesion that was marked during surgery using intraoperative navigation (mean tumor-to-background
ratio (TBRmean): 4.27). The red circle in a and c indicates the location of a biopsy corresponding to a
“MRI-positive, PET negative” part of the tumor (TBRmean: 0.79); (d) Another post-gadolinium MRI
from a different case (left parietal lesion, adenocarcinoma of the stomach); (e,f) ['8F]FET PET images
corresponding to imaging planes marked in d (upper dashed line: e; lower dashed line: f). The black
circle indicates the site of a biopsy from a “MRI-positive, PET-positive” part of the lesion, and the
red circles indicate “MRI-positive, PET-negative” biopsy sites (TBRmean for anterior red circle: 0.27;
posterior red circle: 1.04; black circle: 2.01). Note that MRI contrast enhancement does not necessarily
correlate with high tracer uptake, illustrating both PET/MRI mismatch and intratumor heterogeneity.
Colorbar illustrates PET standardized uptake values (* maximum in (b,c): 3.82; (e,f): 5.0).

On average, the lesions had a volume of 16.2 = 11.8 cm? (average =+ standard deviation;
range: 2.5-41.7 cm?). By means of intraoperative navigation, 39 targeted biopsies (two to
four per lesion and patient) were obtained from these lesions for the purpose of this study.
Two lesions were entirely PET-negative: one was radiation-naive and had a TBR of up to
1.5; another had been radiated before and had a TBR of up to 1.8. From all other lesions,
at least one PET-positive in addition to at least one PET-negative sample was retrieved.
MRI-positive samples were obtained from all lesions, and MRI-negative samples were
obtained from 11 lesions. Thirteen samples were obtained from the four radiated lesions.

Then, all samples were processed and examined by a neuropathologist. Using tissue
from the targeted biopsies and the resection, the diagnosis was confirmed to be metasta-
sized cancer in all cases (origin of neoplasm: four malignant melanomas; four upper/lower
gastrointestinal tract carcinomas; four non-small cell lung cancers; one small-cell lung
cancer; one breast cancer; one renal cell carcinoma).



Cancers 2021, 13, 355

40f12

To correlate imaging with histological properties, we measured the tumor content,
necrosis content, and brain parenchyma content per sample (as percentages) and quan-
tified proliferation as well as the expression of inflammatory and neovascularization
markers (Figure 2).

15 patients scheduled for resection of suspected brain metastasis

Imaging
Preoperative MRI
Preoperative ['®F]FET PET
Intraoperative navigation

39 targeted biopsies (2-4 per patient and lesion) during open surgery

Histopathology

4x Malignant melanoma
4x GIT carcinoma
4x NSCLC
1x SCLC
1x Breast cancer
1x Renal cell carcinoma

Tumor content

PET positive (n = 19) Necrosis content

PET negative (n = 20) <:> Parenchyma content
MRI positive (n = 26) Proliferation (MIB 1/ Ki-67)
MRI negative (n = 13) Inflammation (CD3, CD20)

Angiogenesis (CD34)

Figure 2. From 15 patients undergoing resection of suspected brain metastases, 39 targeted (i.e.,
navigated) biopsies were obtained from parts of the tumor that were MRI-positive, MRI-negative,
PET-positive, or PET-negative (cf. Figure 1). Histopathological evaluation permitted the investigation
of relationships between imaging and tissue properties, such as tumor /necrosis/parenchyma content
(percentages), proliferation indices (MIB 1/Ki-67), and markers of inflammation (CD3 = T-lymphocyte
infiltration, CD20 = B-lymphocyte infiltration) as well as angiogenesis (CD34). GIT: gastrointestinal
tract; NSCLC: non-small cell lung cancer; SCLC: small-cell lung cancer; CD: cluster of differentiation.

In total, thirty out of the 39 samples contained tumor cells (16 of these were PET-
positive; 22 were MRI-positive; 28 were either PET- or MRI-positive). In nine samples, no
tumor cells were found. One of these samples contained necrotic material only (it was
obtained from a part of the lesion that was both MRI-negative and PET-negative). The
remaining eight samples contained parenchyma only. Of these, three were PET-positive,
two of which were also MRI-positive. Two of the five PET-negative samples were MRI-
positive and three were MRI-negative (MRI: four false positives and five true negatives;
PET: three false positives and six true negatives). Consequently, in this setting (i.e., taking
samples from substructures of a predefined mass lesion), the specificity for tumor detection
was 6/9 = 66% for PET and 5/9 = 56% for MRI (Table 1). Sensitivity was 16/30 = 53%
for PET and 22/30 = 73% for MRI. Combining PET and MRI increased the sensitivity to
28/30 = 93%. Ten out of 12 samples from targets that were both PET- and MRI-positive
contained a tumor. One out five samples from targets that were both PET- and MRI-negative
contained a tumor.
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Table 1. Error matrix for PET, MRI, and combined PET/MRI imaging.

Imaging Property Tumor in Specimen (n = 30) No tumor in Specimen (7 = 9)
PET//MRI Positive 16/ /22 (combined: 28) 3//4 (combined: 5)
PET//MRI Negative 14/ /8 (combined: 2) 6//5 (combined: 4)

Twenty out of the 26 samples obtained from radiation-naive lesions contained a tumor.
Twelve were PET-positive (60% sensitivity) and 15 were MRI-positive (75% sensitivity).
Combined sensitivity was 100%. Both PET and MRI specificity were 3/6 = 50% in these lesions.

There were moderate but statistically significant correlations between PET uptake and
tumor content as well as necrosis content per sample (Figure 3): Tumor content increased
with PET uptake (rs = 0.3, p = 0.045) and necrosis content decreased with PET uptake
(rs = —0.4, p = 0.014). Moreover, PET-positive samples had higher tumor content than
PET-negative samples (p = 0.016), with median interquartile range (IQR) tumor percentages
of 75 (10 to 97) vs. 3 (0 to 60) %. There was also a trend (p = 0.089) toward lower necrosis
content with 0 (0-15) % in PET-positive samples vs. 16 (0 to 81) % in PET-negative samples.
On the other hand, MRI-positive samples did not differ from MRI-negative samples with
regard to tumor or necrosis content (Table 2).

a b
=1 o e o0 o =1
=) . Sle *-
o ‘ o
@ @
T &
= o € o
£ 3 oo . & 3
g 5
g o
= ]
g% g%
3 O
. - e z . .
[=2 o
« N o
ol ® & ewes o . ) 2o s eme mome o ¥
0 1 2 3 4 0 1 2 3 4
PET uptake [TBR] PET uptake [TBR]
c d
° 8
@© 8
—_ X
S E o .
%‘w g Qe
5 - :
g =
S~ 59r
o) . s . .
@] & X
o~ Qe
O o o . I ) . ° ] o
0 20 40 60 80 100 0 20 40 60 80 100

Tumor content [%] Necrosis content [%]

Figure 3. Relationships of PET imaging and histological tumor properties. In brain
metastases, 8F-FET uptake imaged by PET (measured as mean tumor-to-background
ratio (TBRmean) of the target volume) increased with tumor content (a; rs = 0.3, p = 0.045)
and decreased with necrosis content (b; rs = —0.4, p = 0.014). B-lymphocyte infiltration
(measured by CD20 positivity) increased with tumor content (c; rs = 0.5, p = 0.002) and
necrosis content increased with proliferation (d; rs = 0.5, p = 0.002). Note that while
scatterplots and linear regression lines are shown to illustrate the data, correlations were
analyzed using Spearman’s rank correlation coefficient rs, as tumor content, necrosis
content, and CD20 positivity were not normally distributed.
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Table 2. PET- or MRI-positive vs. negative samples (median, interquartile range).

Histological Property PET-Positive = PET-Negative = MRI-Positive = MRI-Negative

Tumor content (%) 75 (10-97) 3 (0-60) 60 (3-90) 10 (0-50)
Necrosis content (%) 0 (0-15) 16 (0-81) 13 (0-36) 0 (0-75)
Proliferation index (%) 60 (30-80) 60 (30-70) 65 (30-80) 50 (25-65)
CD20 expression (%) 0 (0-2) 0 (0-0.5) 0(0-1) 0 (0-2)
CD3 expression (%) 1(1-4) 1(0-3) 1(0-2) 3 (1-5)

CD34 score 2 (1-2) 1(1-2) 2 (1-2) 1(1-2)

We determined CD3 and CD20 positivity as markers of T-lymphocyte and
B-lymphocyte infiltration in samples from brain metastases to investigate potential associa-
tions with MRI and PET imaging. Samples from locations with MRI contrast enhancement
did not differ significantly from those without contrast enhancement with regard to these
markers. There were no significant differences between samples from PET-positive and
PET-negative locations either (Table 2), and PET uptake was not significantly correlated
with the positivity of these markers. B lymphocyte infiltration increased with tumor content
(rs = 0.5, p = 0.002; Figure 3).

Ki-67 (MIB 1) positivity in tumor cells as a marker of cell proliferation (proliferation
index) did not differ between MRI-positive and MRI-negative samples or between PET-
positive and PET-negative samples (Table 3). There was no correlation between proliferation
indices and PET uptake. Necrosis increased with proliferation (rs = 0.5, p = 0.002; Figure 3).

Table 3. PET- or MRI-positive vs. negative samples (mean, standard deviation).

Histological Property PET-Positive PET-Negative = MRI-Positive = MRI-Negative

Tumor content (%) 60 + 40 27 £ 35 50 + 41 28 + 36
Necrosis content (%) 14 + 28 39 £ 42 26 + 35 28 + 44
Proliferation index (%) 58 + 28 54 4+ 27 58 + 28 51 +28
CD20 expression (%) 1+2 1+1 1+2 1+1
CD3 expression (%) 3+5 3+4 3+5 3+3
Tumor content (%) 60 + 40 27 + 35 50 4+ 41 28 + 36

Angiogenesis as measured by CD34 expression scores was not significantly correlated
with PET uptake, and CD34 scores did not differ significantly between PET-positive and
PET-negative or between MRI-positive and MRI-negative samples (Table 2 and Figure 4).
Angiogenesis increased with tumor content (rs = 0.4, p = 0.009).

RI b PET
o
positive T positive
M negative

6 8

Number of samples
4

0 1 2

CD34 score [0-5] CD34 score [0-5]

Figure 4. Relationships of PET or MRI imaging and angiogenesis. There were no differences in angiogenesis between

MRI-positive and MRI-negative samples (a) or between PET-positive and PET-negative samples (b), as illustrated by the

respective distributions of positive and negative samples sorted by CD34 scores.
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Radiation affected cell proliferation. Samples from previously irradiated metastases
had significantly lower proliferation indices (39 & 26 vs. 64 £ 25%, p = 0.021). CD3 and
CD20 positivity, CD34 scores, and tumor and necrosis contents did not differ.

At the level of histology, tumors were heterogeneous as well. Tumor content per
sample, e.g., varied substantially between different specimen from the same lesion (average
coefficient of variation (c. v.) per lesion: 60.4%; range of differences between minimum
and maximum tumor content per lesion: 0% to 100%). This was also true for the necrosis
content (average c. v.: 62.3%; range: 0-100%) and the proliferation index (average c. v.:
21.0%; range: 0-75%).

3. Discussion

In the evaluation of brain metastasis, MRI without and with contrast enhancement is
the gold standard. Amino acid PET has been proposed to be useful as well, e.g., for the
differentiation of radiation-induced changes from tumor progression [11-13]. In this study,
we investigated histological tumor properties and their relation to ['®F]JFET PET imaging
and MRI contrast enhancement in brain metastases.

Our data support that in some clinical situations, additional ['®F]FET PET imaging
can be a helpful tool when treating patients with brain metastases.

Current guidelines do not recommend amino acid PET for biopsy planning, since
the size and volume of a metastasis are usually well delineated on contrast-enhanced
MRI [11]. We found that ['®8F]FET PET combined with MRI increases sensitivity from
73% to 93% (from 75% to 100% in radiation-naive lesions) for a tumor that is detected
histopathologically, and that tumor content increases with PET uptake. This can be useful
when planning targeted biopsies: Upon initial (suspected) diagnosis of possible brain
metastases, e.g., primary resection may not be indicated for several possible reasons, such
as the location of the lesion, the number of the lesions, the clinical condition of the patient,
or the likelihood of differential diagnoses. In these cases, a stereotactic biopsy may be the
next diagnostic step. Aiming for a part of the lesion that is not only MRI contrast-enhancing
but also has high amino acid PET uptake will increase the chance of obtaining tissue with a
high tumor cell density.

Another relevant clinical situation is the suspected recurrence of a previously radiated
brain metastasis, where the differential diagnosis of radiation necrosis is a major challenge
for treating physicians. It has been suggested that amino acid PET is useful for this
purpose, but histological confirmation of the actual diagnosis was sparse in most of these
studies [11-15,20-25]. For the present study, all samples were evaluated histopathologically,
and our findings support the employment of ['8FJFET PET in addition to contrast-enhanced
MRI in these situations. High uptake is in fact correlated with high tumor and low necrosis
content, and there is significantly more tumor in [*®FJFET PET-positive parts of metastases
than in ['*®F]FET PET-negative tissue. On the other hand, MRI contrast enhancement was
not indicative of high vs. low tumor or necrosis contents. If a biopsy is considered in these
patients, it appears to be even more important to aim for targets that are ['8F]FET PET
positive to retrieve samples with high tumor and low necrosis content.

Moreover, based on our findings, amino acid PET-guided biopsies should be consid-
ered when molecular testing of tumor tissue is required (or might be required in the future),
as the reliability of these tests increases when tumor content is high [26].

It has been shown that brain metastasis-specific uptake of radiolabeled amino acids,
such as ['8F]FET, is mediated by L-type amino acid transporters [27,28] that are commonly
overexpressed in brain metastases [7]. We found that both angiogenesis and B-lymphocyte
infiltration increased with tumor content, as did [*®F]JFET PET intensity. Necrosis content
increased with proliferation and decreased with ['®F]FET PET intensity. However, neither
angiogenesis nor B-lymphocyte infiltration nor proliferation was significantly correlated
with [¥F]FET PET intensity, suggesting that they are not directly linked to the mechanisms
underlying ['®®F]FET uptake.
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We found that brain metastases are heterogeneous both at the level of imaging and
also histologically. Different parts of the same metastasis can be positive and negative for
both [®F]JFET PET and MRI contrast enhancement, and their tumor and necrosis content
as well as the proliferation index can also vary substantially. Intratumor heterogeneity can
contribute to treatment failure, e.g., due to drug resistance. It has been described at the level
of genetic aberrations and gene expression signatures for samples from spatially separated
manifestations (primary tumor, distant metastases) of the same neoplasm [29]. Our findings
indicate that even within single brain metastases, there may be intratumor heterogeneity.
It seems likely that this is not only reflected in imaging and histology variability, but that it
is based on variable genetics, protein function, and tumor physiology. This may present a
major challenge to personalized medicine and targeted therapies, and any such treatment
approach should not rely on single biopsies. Future studies should include genetic and
proteomic analyses to further investigate intratumor heterogeneity in brain metastases,
and targets of multiple biopsies could be guided by ['®F]FET PET imaging that might not
only be indicative of histological but even molecular intratumor differences.

To minimize bias, we did not exclude small lesions and biopsy targets. It should be
noted that this increases a potential targeting error based on the limited imaging resolution
as well as the limited precision of the image registration and of the intraoperative navi-
gation. Eight samples turned out to contain parenchyma only. The lesions these samples
came from were not significantly smaller than other lesions (13.9 4+ 10.5 vs. 17.8 & 12.9 cm?;
p = 0.55, Student’s t-test, unpaired), but in some cases, this may nevertheless be due to
targeting errors. This might explain why two samples that were positive for both PET and
MRI contained parenchyma only. This would suggest that we underestimated both MRI
and PET specificity. However, this could also reflect actual parenchyma contained within
the imaging-defined lesions, indicating that brain metastases can grow more infiltrative
than often thought [30].

The estimation of tumor cell content as applied in our study (tumor cell percentage)
is sensitive to reliability issues [26]. Therefore, for the present study, all samples were
evaluated by the same neuropathologist (F.L.S.) to eliminate inter-observer variability.

Another limitation of our study is that although we could not differentiate between
different tumor types due to the sample size, not all metastases are the same. It is very likely
that some of the associations we found between histology and amino acid PET imaging
apply more to some entities than to others. This is, e.g., illustrated by the scatterplots
showing tumor and necrosis content vs. PET uptake (Figure 3a,b): even though there is a
significant correlation, there appear to be subgroups of samples with virtually no tumor
or necrosis that still cover the entire spectrum of PET uptake intensity. The inclusion of
metastases that were irradiated before also adds to the heterogeneity of our sample. Future
studies need to investigate these issues to even better specify the value of amino acid PET
imaging for the management of patients with brain metastases.

4. Materials and Methods

This prospective single-center non-interventional study has been approved by the
ethics committee of the Klinikum rechts der Isar (project identification code: 160/15). All
subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki.

4.1. Patients

Patients scheduled for open resection of suspected brain metastases (either solitary
metastasis or one out of multiple metastases) based on a recommendation by our multidis-
ciplinary neuro-oncology tumor board were included when they consented to take part in
the study.

Exclusion criteria were as follows: contraindication for PET/MRI imaging; contraindi-
cation for general anesthesia; indication for emergency surgery prohibiting complete pre-
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operative diagnostic workup; patient declining taking part in the study and/or declining
surgery; pregnancy; age below 18 years.

4.2. Imaging

All patients underwent ['®F]JFET PET and MRI ahead of surgery. MRI scans were
performed on a 3 Tesla (T) MRI scanner, either an Achieva, Ingenia (both by Philips Medical
Systems, The Netherlands B.V.) or a Verio (Siemens Healthcare, Erlangen, Germany) device.
High-resolution T1-weighted images with and without contrast agent (Imm isotropic) were
obtained for all patients. The contrast agent Magnograf® was administered intravenously by
a standardized protocol (0.2mL/kg, 0.5-1mL/s) using a MR-compatible contrast medium
injection system (Spectris Solaris EP, Siemens Medical, Erlangen, Germany).

['8F]FET PET scans were obtained using a Biograph 16 PET/CT (10 patients) or a
Biograph mMR PET/MRI (5 patients; both from Siemens Medical Solutions USA, Malvern,
PA, USA); note that an MRI was obtained as specified above for all patients independently
of PET imaging. Patients were asked to fast for a minimum of 4 h before scanning. A
target dose of 185 & 10% MBq ['®F]FET was administered intravenously. For PET/CT
scans, low-dose CT (24-26 mAS, 120 kV) for attenuation correction was acquired, and
30—40 minutes after injection, PET acquisitions were performed. Static PET data were
reconstructed by filtered back-projection using a Hann filter with a cutoff frequency of 0.34
Nyquist into 128 x 128 matrices with a voxel size of 2.1 x 2.1 x 2.4 mm?. For PET/MRI
scans, static images at 30-40 minutes after injection were reconstructed using 3D OSEM

into 192 x 192 matrices with a voxel size of 1.16 mm?.

4.3. Image Analysis

MRI and PET imaging data were analyzed as reported previously [31]. Briefly, they
were imported and fused using the iPlan® cranial surgical planning software (Brainlab,
Munich, Germany). ["®F]FET uptake in the biopsy target volumes was determined by
an autocontouring process analogous to a study on ['®F]JFET PET in gliomas [32]. Mean
tumor-to-background ratios (TBRmean) Were calculated by normalizing mean ['8F]FET
uptake in the target volumes to mean uptake in the corresponding unaffected region of
the contralateral hemisphere according to previous studies and current guidelines on PET
imaging in gliomas [8,32,33]. A TBRmean of 1.6 or higher was defined as PET-positive
except for samples from lesions that were irradiated before, where a TBRyean of 2.0 or
higher was defined as PET-positive according to previous studies [13,20]. Biopsy sites
within lesions suspicious for brain metastasis were defined as MRI-positive when they
were contrast-enhancing and otherwise defined as MRI-negative.

4.4. Surgery

All patients had surgery for the removal of a cerebral mass lesion that was suspicious
for metastasis. Using intraoperative navigation (Curve®, Brainlab, Munich, Germany) and
the fused imaging data, tissue samples were collected from PET-positive, PET-negative
(SUV < 1.6), MRI-positive (i.e., contrast-enhancing), and MRI-negative (i.e., not contrast-
enhancing) targets within the lesions. The locations of the samples were marked digitally
using intraoperative navigation (Figure 1).

4.5. Histopathological Analysis

For histopathological analysis, hematoxylin and eosin (HE) staining was performed to
quantify percentages of vital tumor (“tumor content”), necrosis (“necrosis content”), and
brain parenchyma (i.e., the ratio of tumor tissue, necrotic tissue, and brain parenchyma to
total tissue per sample).

Furthermore, immunohistochemistry was performed. Ki-67 was stained to label
proliferating cells. A proliferation index was determined for every biopsy by evaluating
the percentage of positive cells compared to all vital tumor cells. Labeling for cluster of
differentiation (CD)3 and CD20 was used to mark T lymphocytes and B lymphocytes,
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respectively. The percentage of positive cells in the area of the whole biopsy tissue was
determined. We also labeled for CD34 as a marker for vascularization. A score from 0 to
5 was assigned for every biopsy, with 0 = no vessels, 1 = single vessels, 2 = few vessels,
3 = several vessels, 4 = many vessels, 5 = multitudinous vessels.

For immunohistochemistry, 2 pm thick slides were cut and dried at 76 °C, followed
by epitope uncovering in pH 6.0 citrate buffer at 95°C for 30 minutes and H,O; incubation.
MIB 1/anti-Ki-67 antibody (monoclonal, rabbit, clone: SP6, dilution 1:200; Thermo Fisher
Scientific, Waltham, MA, USA), anti-CD3 antibody (monoclonal, rabbit, clone: MRQ-39,
dilution 1:500; Cell Marque, Rocklin, CA, USA), anti-CD20 antibody (monoclonal, mouse,
clone: L26, dilution 1:500; Dako, Glostrup, Denmark) or anti-CD34 antibody (monoclonal,
mouse, clone: QBEnd /10, dilution 1:200; SigmaAldrich, St. Louis, MO, USA) was incubated
overnight at 4 °C, followed by incubation in biotinylated secondary anti-rabbit IgG anti-
body (Vector Laboratories, Burlingame, CA, USA) in a dilution of 1:400. Subsequently, ABC
reagent (Vector Laboratories, USA) was incubated for 30 min, followed by diaminobenzi-
dine reagent (Dako, Glostrup, Denmark). For all immunostainings, counterstaining with
hematoxylin was conducted. Positive controls served as quality assurance.

4.6. Statistics

Statistical analysis was performed using IBM SPSS Statistics version 25.0 (SPSS Inc.,
IBM Corp., Armonk, NY, USA). To compare PET-positive vs. negative and MRI-positive
vs. negative as well as irradiated vs. radiation-naive groups of biopsy samples, we
tested the dependent variables (proliferation index, CD3 expression, CD20 expression,
CD34 score, necrosis content, tumor content) for normality (Shapiro-Wilk test). All except
for the proliferation index were not normally distributed, neither when regarding the
entire sample nor when sorted by PET- or MRI-positive vs. negative or by irradiated vs.
radiation-naive. Thus, a Mann-Whitney U test was applied when groups were compared
(except for comparing proliferation indices, where unpaired t-tests were applied), and
correlations were analyzed using Spearman’s rank order correlation. Accordingly, we
refer to the median and interquartile range (IQR) when comparing groups with regard
to non-normally distributed variables (Table 2). Means and standard deviations (SD)
are reported as well but should be interpreted with caution for all variables except for
the proliferation index (Table 3). An error probability of less than 0.05 was considered
statistically significant.

5. Conclusions

In this study, ['®F]FET PET provided clinically valuable information on brain metas-
tases. PET increased sensitivity for histopathologically detectable tumor from 73% (MRI
contrast enhancement alone) to 93% (MRI and PET combined). Higher uptake indicated
higher tumor and lower necrosis content. This confirms that in brain metastasis treatment,
amino acid PET can be helpful for the differentiation of actual tumor progression from
treatment-associated (necrotic) tissue changes, i.e., pseudoprogression. Moreover, this
argues for the application of amino acid PET-guided selection of biopsy targets.

['8F]FET PET and targeted biopsies revealed intratumor heterogeneity in brain metas-
tases. This should be investigated at the molecular level in future studies and suggests that
if possible, multiple biopsies should be acquired from single metastases.
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