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Abstract: In the past century, plant biostimulants have been increasingly used in agriculture as
innovative and sustainable practice. Plant biostimulants have been mainly investigated as potential
agents able to mitigate abiotic stress. However, few information is available about their ability
to influence fruit quality or change fruit phytochemical composition. In particular, very little is
known about their effects on anthocyanin synthesis and accumulation. Due to the increasing
demand of consumers for healthier foods with high nutraceutical values, this review tries to fill the
gap between anthocyanin content and biostimulant application. Here, we elucidate the chemical
structure, biosynthetic pathway, plant distribution, and physiological role of anthocyanins in plants.
Moreover, we discuss the potential implications for human health derived from the consumption
of foods rich in these molecules. Finally, we report on literature data concerning the changes in
anthocyanin content and profile after the application of biostimulant products on the most common
anthocyanin-containing foods.

Keywords: anthocyanidins; sustainable agriculture; fruit quality; nutraceuticals; antioxidant activity;
phytochemicals; meta-analysis; bibliometric analysis

1. Introduction

Over the past years, the use of chemical fertilizers as agronomic practice has strongly
increased with the aim to enhance the food production and meet the global needs caused
by an exponential growth of the population [1,2]. However, despite a big increment of
the production that can be easily obtained after the application of chemical fertilizers,
their uncontrolled use could cause different and severe problems, including global climate
change, environmental pollution, and loss in the quality of the production [3]. In order to
reduce these problems, the latest agronomic research lines are looking for more sustainable
alternatives, which can be useful not only to limit the dependence from chemical fertilizers
together to the adverse consequences caused by their application, but also to maintain or
even improve the production quality [4].

In this context, plant biostimulants are actually considered a sustainable strategy to en-
hance crop yield under either optimal or stress conditions, since they may partially reduce
chemical fertilizers [5,6]. Moreover, differently from chemical fertilizers, biostimulants
are products based on natural substances often originating from food and/or industrial
wastes, hence they may also strongly contribute to the circular economy aspects [7,8]. At
the beginning, the effects derived from the application of biostimulants were exclusively
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studied by monitoring plants under abiotic stresses, and evaluating their improvement
in tolerance mechanisms [2,9–13]. Among the studied parameters, the attention was al-
most exclusively focused on plant physiological parameters, such as the morphological
aspects, pigment content, or photosynthesis and photorespiration efficiency [14–16]. On
the other hand, only a limited number of experiments were addressed to the quality of
fruits produced by plants treated with biostimulants, and in particular mostly were related
to the evaluation of few pomological parameters, such as size, weight, yield, and color
of the produced fruits [17,18]. Consequently, the biostimulant effects on nutritional and
nutraceutical attributes were and are still quite unexplored [1].

However, the consumer growing interest in healthy foods encouraged also the study of
the parameters related to nutritional and nutraceutical aspects of foods derived from plant
treated with biostimulants [1,19]. In particular, the current epidemiological emergency
caused by SARS-CoV-2 has contributed to a change in food consumption all over the world,
by increasing consumer attention not only for the origin of the raw materials, but also for the
potential health benefits [19]. Moreover, the high incidence of obesity, cancer, and diabetes
at global level, highlights the strong relationship between food-intake and long-term health
effects [20,21], encouraging the consumption of foods rich in bioactive compounds [22].
Among them, red-black colored fruits are now receiving increasing attention due to their
significant amounts of anthocyanins and anthocyanidins, compounds able to exert a wide
range of biological and pharmacological properties, including antioxidant, antimicrobial,
anti-inflammatory, anticancer, antidiabetic, and antiatherosclerotic activity [22]. The aims
of this review are: (i) To elucidate the chemical structure, biosynthesis mechanism, plant
distribution, and physiological role of anthocyanins in plants; (ii) to investigate the potential
implications for human health due to consumption of foods rich in anthocyanins; (iii) to
report information concerning the changes in anthocyanin content and profile following
the application of biostimulant products on the most common anthocyanin-containing
foods.

2. Anthocyanidins and Anthocyanins
2.1. Chemical Structures and Classification

Anthocyanidins are colored molecules having medium-size and belonging to the
class of flavonoids [23]. Actually, 25 different anthocyanidins are known (Figure 1), that
differ from each other for the presence of hydroxyl (−OH) and methoxy (−OCH3) groups
bound at the scaffold core (Figure 1) [24]. Consequently, anthocyanidins are grouped
into 3-hydroxyanthocyanidins, 3-deoxyanthocyanidins, and O-methylated anthocyanidins.
Cyanidin (Cy), Delphinidin (Dp), Pelargonidin (Pg), three among the non-methylated
anthocyanidins, are the most common in nature. In particular, it was estimated that 50% of
plants producing anthocyanidins have Cy, 12% have Dp, and 10% have Pg [25,26]. Peonidin
(Pn), Malvidin (Mv), and Petunidin (Pt), belonging to the methylated anthocyanidins, can
be also easily found in plants [25,26].

In most of the cases, anthocyanidins are bounded with sugar moieties, forming
the corresponding anthocyanins. Glycosylation is achieved enzymatically following the
adding of the sugar portion at the 3rd and/or 5th position (R1 and/or R2 subsistent of
the chemical structure displayed in Figure 1 of the scaffold [27,28]. As a consequence
of the glycosylation, anthocyanins have an increased water solubility and stability with
respect to the related anthocyanidins [28]. Despite the most common glycosylation pro-
cess involves the condensation of monosaccharides such as glucose, galactose, rhamnose,
arabinose, rutinose and xylose, also disaccharides and trisaccharides may be attached in
some cases [23]. Finally, anthocyanins may be also often acylated with organic acids such
as p-coumaric, caffeic, and ferulic acids via ester bonds usually to the 3-position of the
sugar moiety [23,27]. Consequently, to date more than 500 different anthocyanins that
differ not only for the glycosylation pattern of the scaffold, but also for the presence and
position of aliphatic or aromatic carboxylates are reported. In spite of their great structure
variability, the anthocyanins most distributed in plants are those originated by Cy, Dp,
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and Pg. They are present in 80% of the leaves, 69% of the fruits, and 50% of the colored
flowers [19,25,26,29,30]. On the other hand, anthocyanins formed by Pt, Mv, and Pn, are
limitedly distributed [19,25,26,29–31].

Agriculture 2021, 11, x FOR PEER REVIEW 3 of 25 
 

 

position of aliphatic or aromatic carboxylates are reported. In spite of their great structure 
variability, the anthocyanins most distributed in plants are those originated by Cy, Dp, 
and Pg. They are present in 80% of the leaves, 69% of the fruits, and 50% of the colored 
flowers [19,25,26,29,30]. On the other hand, anthocyanins formed by Pt, Mv, and Pn, are 
limitedly distributed [19,25,26,29–31]. 

The conjugated bonds in the chemical scaffold are one of the responsible factors for 
the light absorption at about 500 nm [27,32]. However, also the type of substituents pre-
sent in the benzyl ring, local pH, state of aggregation and complexation with other inor-
ganic and organic molecules may contribute to color variation. In particular, it has been 
observed that anthocyanins may display almost the chromatic scale [27,32,33]. 

 
Figure 1. Chemical scaffold of anthocyanin compounds and their relative substituents. In the table, 
the most common anthocyanidins are reported in bold. 

2.2. Biosynthesis 
Anthocyanidins and anthocyanins are almost exclusively produced by plants, in a 

branch of the phenylpropanoid pathway that is also involved in the biosynthesis of other 
flavonoids [34,35] (Figure 2). The enzymes involved in biosynthesis of anthocyanidins are 
localized in the endoplasmic reticulum, organized into a multi-enzyme complex named 
flavonoid metabolon [34,35]. The precursor for the synthesis of all flavonoids is the 

Figure 1. Chemical scaffold of anthocyanin compounds and their relative substituents. In the table,
the most common anthocyanidins are reported in bold.

The conjugated bonds in the chemical scaffold are one of the responsible factors for
the light absorption at about 500 nm [27,32]. However, also the type of substituents present
in the benzyl ring, local pH, state of aggregation and complexation with other inorganic
and organic molecules may contribute to color variation. In particular, it has been observed
that anthocyanins may display almost the chromatic scale [27,32,33].

2.2. Biosynthesis

Anthocyanidins and anthocyanins are almost exclusively produced by plants, in
a branch of the phenylpropanoid pathway that is also involved in the biosynthesis of
other flavonoids [34,35] (Figure 2). The enzymes involved in biosynthesis of antho-
cyanidins are localized in the endoplasmic reticulum, organized into a multi-enzyme
complex named flavonoid metabolon [34,35]. The precursor for the synthesis of all
flavonoids is the phenylalanine. This amino acid marks the branch point of primary
and secondary metabolism from which the phenyl-propanoid pathway can lead to the
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synthesis of all phenolic compounds [34]. As first step of the pathway, phenylalanine is
converted by phenylalanine ammonia-lyase (PAL) in cinnamic acid, which is then further
transformed into coumaric acid by the action of cinnamic acid 4-hydroxylase (C4H). Fol-
lowing the activation catalyzed by the 4-coumarate-CoA ligase (4CL), 4-coumaryl-CoA
reacts with three molecules of malonyl-CoA in a reaction catalyzed by chalcone synthase
(CHS). This reaction allows the formation of 4-hydroxychalcone (ex. naringenin chalcone)
and it marks the start of the flavonoid biosynthetic pathway. The 4-hydroxychalcone
is transformed into the respective 7,3′,5′,trihydroxyl-flavone (ex. naringenin) by the
action of chalcone isomerase (CHI). Afterwards, flavanone 3-hydroxylase (F3H) oxi-
dizes 7,3′,5′,trihydroxyl-flavone into flavonol-form (ex. dihydrokaempferol). Then, dihy-
drokaempferol is transformed into dihydromyricetin or dihydroquercetin by the action
of flavonoid 3′-hydroxylase (F3′H) or flavonoid 3′,5′-hydroxylase (F3′5′H), respectively.
In order to convert the three hydroflavonols into anthocyanidins, the combined action of
dihydroflavonol-4-reductase (DFR) and anthocyanidin synthase (ANS) is required. The
first enzyme yields to the formation of the leucoanthocyanidins, meanwhile the second
one catalyzes the 2-oxoglutaratedependent oxidation of each leucoanthocyanidin into
2-flavan-3,4-diol. These latter compounds spontaneously evolve to the respective antho-
cyanidins [36,37].
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Figure 2. Biochemical pathway for the synthesis of anthocyanidins. PAL: phenylalanine ammonia-
lyase; C4H: cinnamic acid 4-hydroxylase; 4CL: 4-coumarate-CoA ligase; CHS: chalcone synthase;
CHI: chalcone isomerase; F3H: flavanone 3-hydroxylase; F3′H: flavonoid 3′-hydroxylase; F3′5′H:
flavonoid 3′,5′-hydroxylase; DFR: dihydroflavonol reductase; ANS: anthocyanidin synthase (ANS).

After their synthesis, anthocyanins are transported to the plant vacuole through vesicle
trafficking pathway that may involve, or not, Golgi apparatus [38]. In vacuole, anthocyani-
dins are converted into the more stable form by the action of UDP-glucose flavonoid 3-O-
glucosyltransferase (UF3GT) or UDP-glucose flavonoid 5-O-glucosyltransferase (UF5GT).
These two enzymes add a sugar moiety respectively at the 3rd and/or 5th position (R1
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and/or R2 subsistent of the chemical structure displayed in Figure 1 of the chemical scaf-
fold [27,28,36]. Finally, the glucoside form of anthocyanidins may be further modified in
many species by glycosylation, methylation, acylation, or condensation with other organic
molecules [36,37].

2.3. Role in Plants

Anthocyanins are one of the major groups of natural pigments and they are respon-
sible for colors of many leaves, flowers, and fruits [39]. In the past the physiological
role of anthocyanins in plants was exclusively ascribed to improve the reproductive suc-
cess by facilitating communication between plants and pollinators or seed-dispersers [40].
On the other hand, in order to justify the occurrence of anthocyanins also in plant dis-
tricts different from flowers and fruits, it was mistakenly assumed that they could be
an incidental consequence of the flavonoid pathway [41]. Indeed, the intermediate com-
pounds dihydrokaempferol, dihymyricetin, and dihyquercetin may alternatively be ox-
idized into respective flavon-3-ols by flavonol synthase (FLS) as well as used for the
production of anthocyanins (Figure 3) [27,29]. However, it was shown that some parts of
the plants devoid of immediate signaling function contained a considerable amount of
these flavonoids [27,42,43]. On the other hand, anthocyanins have specific histological
localization, and their accumulation patterns do not match those of other pigments [27,44].
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flavonoid 3′-hydroxylase; F3′5′H: flavonoid 3′,5′-hydroxylase; DFR: dihydroflavonol reductase; ANS:
anthocyanidin synthase (ANS).

For these reasons, recently, anthocyanin role in plants was questioned. To date, it is
well-known that these molecules are involved in several defensive processes, including the
screen role against UV-B [45–49] and plant protection against high light intensities [46,49,50].
However, light stresses are not the only abiotic stress in which anthocyanins seem to play a
key role. Indeed, thanks to their high antioxidant capacity, these flavonoids are involved
in all those responses that contrast oxidative stress induced by heat conditions [51,52]
and water and nutrient deficit [51,53,54]. Moreover, anthocyanins are also involved in
response to biotic stresses, such as mechanical damage due to herbivore attack [55–57],
insect infestation or fungal infection [58–60]. Table 1 reports the main abiotic and biotic
stress conditions in which variations of the total content of anthocyanins were observed.
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Table 1. Documented plant responses to abiotic and biotic stresses that involves anthocyanins.

Condition Specie References

Abiotic Stress

Heat Stress

Ipomoea batatas [43,61,62]
Daucus carota [63]
Rosa hybrida [64]

Solanum melongena [65–68]
Saccharum officinarum [69,70]

Camellia sinensis [71]
Sorghum vulgare [72]

Vitis vinifera [73]
Oryza glaberrima [74]
Actinidia deliciosa [75]

Arabidopsis thaliana [76]
Quercus suber [77]

Light Stress

Solanum melongena [78–80]
Phalaenopsis aphrodite [81]

Silene littorea [45]
Arabidopsis thaliana [47,82–85]

Chrysanthemum
morifolium [86]

Begonia semperflorens [87]
Brassica campestris [88]
Perilla frutescens [89,90]
Lonicera japonica [91]
Actinidia deliciosa [75]
Malus domestica [50,92]

Water Stress

Camellia sinensis [93]
Vitis vinifera [51,94]

Hibiscus sabdariffa [95]
Malus domestica [96]

Fragaria ananassa [97]
Ocimum basilicum [54]
Sorghum vulgare [98]

Oryza sativa [99]
Punica granatum [53]

Salt Stress

Arabidopsis thaliana [100–102]
Nicotiana tabaccum [103]

Hibiscus rosasinensis [104]
Fragaria chiloensis [105]

Oryza sativa [106]
Solanum tuberosum [107]

Biotic Stress

Insect Attack

Arabidopsis thaliana [55–57,108]
Gossypium arboreum [109]
Solanum tuberosum [110]
Sorghum halepense [111]
Fragaria ananassa [112]

Vaccinium myrtillus [113]

Fungi Attack
Arabidopsis thaliana [60,114,115]

Oryza sativa [99,106]
Fragaria ananassa [59,116,117]

Beyond the involvement of anthocyanins to contrast the oxidative stress conditions
related to abiotic and biotic menaces, anthocyanins seem to be also able to contribute
to the physiological processes during non-stress conditions, such as the elevation of leaf
temperature [91,118]; transport of nutrients and monosaccharides [119–121]; and regulation
of osmotic balance [51,105]. Table 2 reports the main plant physiological pathways in which
anthocyanins are involved.
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Table 2. Documented plant physiological processes in which anthocyanins are involved.

Plant Physiological Role Specie References

Elevation of Leaf Temperature

Several species [121–126]
Lactuca sativa [127]

Arabidopsis thaliana [128,129]
Galax urceolata [130]

Senescence

Several species [131–134]
Populus euramericana [135]
Arabidopsis thaliana [136,137]

Brassica oleracea [138]
Actinidia deliciosa [139]
Torenia fournieri [140]

Transportation of Monosaccharides
Several Species [119–121]

Zea mays [141,142]
Vitis vinifera [143–145]

Regulation of Osmotic Balance

Several species [125,146,147]
Xerophyta viscosa [148]

Vitis vinifera [149–151]
Fragaria ananassa [152]
Populus deltoides [153]

Arabidopsis thaliana [76,129]
Craterostigma wilmsii [148]

Camouflage
Several Species [123,154–160]
Theobroma cacao [121]
Mangifera indica [121]

Enhancing of Light Absorption

Several Species [126,155,161–163]
Theobroma cacao [121]

Zea mays [164]
Mangifera indica [121]

2.4. Distribution in Edible Sources and Contribution in Human Diet

Fruits and vegetables are the only edible sources from which it is possible assuming
anthocyanin compounds [26,165]. Although among the fruits the anthocyanin content is
very variable, generally the level of anthocyanins in fruits is much higher than in veg-
etables [166]. The lowest anthocyanin content per 100 g of fresh weight was recorded
for grapefruit [167,168], date [169], and fig [170], meanwhile some berries, such as cran-
berry [19], chokeberry [171], huckleberry [172], blueberry [173], raspberry [174,175], and
bilberry [176,177] shows the highest one. Concerning vegetables, the most reach in antho-
cyanidins and anthocyanins are red cabbage [178–180], purple cabbage [181], and purple
potato [61,182]. However, total anthocyanin content in fruits and vegetables considerably
varies among the different genera and cultivars, and it is strongly affected by different
light, temperature, and agronomic factors [183]. Figure 4 shows the cluster distribution of
anthocyanins in plant kingdom according to the anthocyanin content reported in Phenol-
Explorer Online Database [184–186]. For this analysis, Euclidean distances were calculated
by using the average linkage method.
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In the recent years, some flowers were proposed as alternative edible sources of phy-
tochemicals. In order to be included in human diet, flowers have to be non-toxic and
innocuous [187,188]. Indeed, flowers may contain toxic substances, including hemaglutin-
nins, oxalic acid, cyanogenic glycosides, or alkaloids and cause severe damage to the
consumers [187]. However, many flowers can be considered safe, and therefore can be
consumed as food. Although flowers are little known as edible sources, they have been
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used for over 500 years in Europe and China as herbal medicine [189]. Actually, they are
mainly used for enhancing the aesthetic value of foods, as evidenced by the increasing
number of edible flower cookbooks, culinary magazine articles, and dedicated television
segments [190,191]. Despite edible flowers are still considered a niche product, they are
gaining attention due to their exotic aroma and textures, delicate flavor, attractive color
and phytochemical composition [192]. In particular, edible flowers are a potential source of
several bioactive compounds, including anthocyanins [191–193]. Among them, begonia
(Begonia tuberhybride), tagete (Tagetes patula), mini rose (Rosa chinensis), mini daisy (Bellis
annua), litoria (Clitoria ternatea), cosmos (Cosmos sulphureus), and cravine (Dianthus chinensis)
are the most known and commercialized [192].

Apart from their origins and physiological roles in plants, anthocyanidins and antho-
cyanins seem to play important roles in human health and well-being [19,27,177]. Indeed,
their intaking through the consumption of foods rich in these flavonoid compounds seems
to be linked to an improvement of the redox balance thanks to their high scavenging
and reducing activities [19,183,194]. On the other hand, interesting properties, such as
antitumor, antiatherogenic, antiviral, and anti-inflammatory effects, decrease of capillary
permeability and fragility, inhibition of platelet aggregation and immune stimulation were
reported [195]. The positive effects ascribed to the consumption of fruits and vegetables
rich in anthocyanidins and anthocyanins are not limited to the gastro-intestinal tract. In-
deed, anthocyanins resisting to gastric digestion may be absorbed in the stomach via
bilitranslocase-mediated mechanism [196–199], or in the intestine through a mechanism
involving the sodium–glucose co-transporter as suggested for other flavonoids [197–201].

3. Plant Biostimulants

Biostimulants are products used in agriculture aimed to promote plant growth with-
out being nutrients, soil improvers, or pesticides [1,9,13,202,203]. In particular, biostim-
ulants are distinguished from agrochemicals because they only influence the vigor of
plants and have no direct action against pests or diseases. Rather, they uniquely facili-
tate the uptake of existing and applied nutrients [204], resistance to abiotic stress such as
salinity [6,11,100,205,206], temperature [2,13,207–211], or drought [208,212–216], following
in an improvement of the final production also in adverse environmental conditions [1].

3.1. Bibliometric Analysis

According to PubMed database, 1680 scientific papers related to biostimulant research
were published from 1958, indicating an increasing interest for this sustainable agronomic
practice. However, despite products working as biostimulants are used as alternative
agronomic practice since more than 20 years, only recently biostimulants are deeply under
investigation. Indeed, more than 50% of the 1680 papers (856) concerning biostimulants
have been published in the last 5 years. Moreover, the title, abstract, and the keywords of
the papers published in the last 5 years were used for bibliometric analysis aimed to find the
co-occurrence of terms using VOSviewer 1.6.15 [217,218]. In order to avoid redundancies,
only the words that were repeated at least five times in the text were used for this analysis;
typographical errors were removed and similar terms were standardized to a single form.
Consequently, 50 terms were selected, and clustered according to the association strength
(from −1 to +1). Finally, a visual cluster analysis (Figure 5, Panel A) was generated, where
6 clusters and 585 links were identified and integrated into a network pathway.

Focusing on the term “plant biostimulant” (Figure 5, Panel B) we found a strong
correlation with the different typologies of formulations currently present on the market.
Although, biostimulants are formulated with a great variety of ingredients, they are gener-
ally classified into algal-based, protein hydrolysate, aminoacid-based, humic acid, fulvic
acid, food and industrial waste-based, and microbial inoculant [219].
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Meanwhile “plant growth” were the words most used in the 865 articles (Figure 5,
panel C), “fruit quality” and “human health” resulted to be the least commons. This result
should not be surprising, since researches always focused on the potential effects derived
from the application of the biostimulant products on agronomical (“plant weight,” “plant
height,” “crop productivity,” “crop performance”) and plant physiological (“chlorophyll,”
“proline,” “abscisic acid,” “secondary metabolism”) parameters. In particular, these pa-
rameters were almost exclusively investigated in stress conditions, such as “heat stress,”
“water deficit,” and “salt stress.”

Finally, our analysis revealed that only few researches dealt with the quality of fruits
produced by plants treated with biostimulant. This is also confirmed by the publication
of only 20 papers in the last 5 years regarding the evaluation of the fruit quality after the
treatment with biostimulants. In particular, as it is showed in Figure 5, Panel D, only some
attributes related to fruit quality were deeply investigated, such as those pomological
(“weight” and “size”) and those related to production (“yield”) parameters. On the other
hand, the potential effects of the biostimulant application on fruit quality, in term of both
nutritional and nutraceutical attributes, and on “human health” were poorly studied [1].
In the following sections, we report what has currently been published regarding the effect
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of biostimulants on fruit quality, with special attention to anthocyanin and anthocyanidin
content.

3.2. Plant Biostimulant Treatment Affecting the Quality of Edible Fruits and Vegetables

Among the different parameters evaluated for fruit quality, color is one of the major
factors in creating a positive image of the fruit for the consumers, and consequently it
has a great effect on sales [1]. As previously mentioned, the red-violet color in several
fruits is due to the presence of anthocyanins and anthocyanidins, and their estimation
is then an aspect belonging the fruit quality [220,221]. Here, we report a forest plot in
which randomized-controlled studies comparing the effect derived from the application of
biostimulants on total anthocyanin content against control group (water only treated) are
displayed (Figure 6). Inclusion criteria were: (i) Studies had to report a quantitative analysis
of anthocyanin content; (ii) among the experimental conditions, unstressed plants had to
be used as controls; (iii) the number of biological replicates evaluated during the trials
had to be clearly expressed; (iv) no restrictions regarding publication dates were imposed;
(v) the studies were eligible exclusively if they were published in English; (vi) studies had
to be published in peer reviewed scientific journals. Outcome measures included both the
evaluation of the total anthocyanin content via spectrophotometric and chromatographic
methodologies. Consequently, data from 12 publications were identified and included in
the meta-analysis (Figure 6).
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Analyzing the forest plot, there was evidence of heterogeneity (I2 = 88%, p > 0.0001)
but no evidence of publication bias was detected after the examination of funnel plot
(Figure 7). This is the first study to systematically review the effect derived from the
biostimulant application and the increasing of anthocyanin content in fruits produced from
biostimulant-treated plants. Our meta-analysis showed strong evidence of association
between biostimulants and the increasing of anthocyanin compounds. These findings
are in line with previous works that have found a relationship between the biostimulant
application and the general improvement of polyphenolic compounds in fruits harvested
from plants treated with different biostimulants [231,232], supporting the notion that these
products may promote the fruit quality affecting the content of these pigments. In the
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following sections, we analyze in detail the works in which quantitative and qualitative
variations of anthocyanin compounds have been recorded.
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3.2.1. Apple (Malus domestica)

Apples are the most common fruits consumed all over the world, and they are a very
rich source of antioxidant bioactive compounds, including polyphenols. The coloration of
red apple skin derives from the presence of anthocyanins in the fruit epicarp, especially
glycosylated Cy, such as cyanidin-3-O-glycosides and cyanidin-3-O-galactosides [233].

In a recent work, Soppelsa et al. evaluated the effects derived by the application
of ten different typologies of biostimulants on apple quality [223]. They conducted the
experiments during two consecutive seasons using biostimulants based on humic acids
(HA), seaweed extracts (SWE), protein hydrolysates (PH), amino acids (AAB), vitamins
(VTB), chitosan (CHTB), or containing silicon (SLB). The parameters related to fruit quality
included pomological, physiochemical, nutritional, and nutraceutical attributes. At the
end of the experimentation, they showed how the application of the biostimulants did not
affect the tree productivity as well as physiochemical parameters of the fruits, such as flesh
firmness (FF), total soluble solids (TSS), and total acidity (TA). On the other hand, one of
the major effects of the biostimulant application was the significant change in skin apple
coloration. However, the observed effect was detected only in apples treated with SWE, PH,
and VTB. Their results were also supported by the evaluation of the total anthocyanidin
content (TAC), showing that apples treated with these biostimulants presented an antho-
cyanin concentration double than the respective untreated fruits. Consequently, when
authors evaluated the total polyphenol content (TPC) and antioxidant activity via ABTS
assay, they found higher values for the apples treated with the mentioned biostimulants.
Authors, according to previously published data [234], hypothesized that the boosted final
red coloration might be linked to the modulation of plant endogenous growth regulators
(such as cytochins and abscisic acid). These events led to an enhancement of anthocyanin
biosynthesis and accumulation in the skin during ripening.

In a more recent work the effect derived from the application of CaCl2 alone or in
combination with SWE or with a commercial biostimulant formulation enriched in silicon
and zinc was evaluated [224]. Also in this case, SWE application did not affect the final
yield, meanwhile the treatment was able to affect the coloration of the fruit skin enhancing
the anthocyanin production. In addition, an effect on the accumulation of Ca, Zn, and Mn
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in the apple skin was observed after the application of both typologies of biostimulants. In
addition, the authors suggested that the accumulation of these minerals in the skin, along
with the increase of phenolic compounds during fruit ripening and storage, may represent
the principal explanations of the reduced fruit susceptibility to post-harvest disorders.

3.2.2. Eggplant (Solanum melongena)

Among the vegetables, eggplants are one of the edible sources having very high
amount of anthocyanins stored mainly in the skin. In particular, the skin showed to be
rich in the rutinoside forms of Mv, Cy, and Pn [235]. However, the effect of biostimulant
products on eggplants is actually less studied.

Pohl et al. studied the effects resulting from the application of SWE biostimulant
derived from Ascophyllum nodosum [222] on six different eggplant cultivars (Cristal, Epic,
Flavine, Gascona, and Onyx, WA 6020). In this work, they showed that all the plants
treated with SWE set higher number of fruits of smaller diameter, resulting in a significant
increment of total and marketable yield. Concerning the nutraceutical properties, the
authors highlighted how the effect could be significantly different among cultivars. In
particular, they reported that some cultivars (Cristal, Epic and WA 6020) recorded a more
significant increase of TAC after the application of the biostimulant.

Sabatino et al. who inoculated Rhizophagus irregularis mycorrhiza on eggplant root-
stocks, showed how FF was positively affected, in addition to several nutritional values,
such as P, Fe, and protein content. From a nutraceutical point of view, also higher values of
ascorbic acid, TPC, TAC, chlorogenic acid and glycoalkaloids were observed [236].

3.2.3. Grape (Vitis vinifera)

Due to the economic impact of grape and its related products, the effect of biostimulant
application on Vitis vinifera is certainly one of the most studied. In general, biostimulants
were employed with the aim to promote plant growth and fruit quality, and in particular
several of the published manuscripts investigated how to improve the color of skin grape
because it is not only directly linked to fruit maturity, but also to the good preparation of
food secondary processed foods, including wines [237].

Tommaso Frioni et al. studied the effects derived from the spray application of
a SWE biostimulant containing Ascophyllum nodosum extracts on three different grape
cultivars (Sangiovese grown under Mediterranean conditions, Pinot Noir and Cabernet
Franc within a cool-climate viticulture region) [238]. The product was sprayed five times
during the season at the doses described in the product label. The authors found that
SWE was not able to affect leaf gas exchanges, fruit yield, berry cluster or fruit size, but
positively affected the phenolic content. In particular, the authors found that anthocyanins
were strongly accumulated in the skin of the fruits. Overall, they hypothesized that the
biostimulant might boost anthocyanins and other polyphenols close to veraison and then
later in the season, maintaining active the accumulation before harvest. This hypothesis
was supported by the fact that SWE-triggering anthocyanin biosynthesis in grape skins
anticipated veraison. Finally, they also described an effect dependent on the genotype, due
to the recording of higher values in Sangiovese and Pinot Noir cultivars than in Cabernet
Franc.

Similar results were also obtained in a more recent study, in which the effect observed
after the foliar application of a similar biostimulant was evaluated on both physiological
and biochemical parameters of Vitis vinifera (cv. Sangiovese) [239]. In this work, the authors
stated the SWE-based biostimulant was able to affect the eco-physiological parameters
and secondary metabolic pathways, resulting in improved grape quality. In particular, the
applications of A. nodosum extract had significant effects on phenylpropanoid biosynthesis,
both in berry skins and in leaves, influencing anthocyanin partitioning and lowering the
biosynthesis of methoxylated compounds. However, in disagreement with Frioni, Palliotti
et al. also observed an improvement of the leaf gas exchanges, maximum photosystem II
efficiency, and grape maturity.
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A very recent work studied the effect derived from the application of a natural bios-
timulant in the accumulation of anthocyanins in “Red Globe” grapes, by investigating the
potential mechanism of action through the study of the changes in gene expression and ac-
tivities of proteins involved in flavonoid pathways [221]. In particular, these authors found
that after the treatment with the biostimulant all genes involved in the anthocyanin biosyn-
thesis were up-regulated and the activities of the key enzymes related to this pathway,
including PAL, CHI, UFGT, and DFR, increased.

3.2.4. Cherry (Prunus avium)

Sweet cherry has a relevant economical value due to its commercial characteristics,
nutritional value, and beneficial health effects [240]. Unfortunately, the quality of cherries
is severely compromised by climatic conditions, resulting in a significant economic loss.
Despite this, only limited studies have attempted to find solutions to the problem using
sustainable agronomic techniques. Berta Gonçalves et al. studied the effect of salicylic acid,
glycine-betaine complex, and SWE as biostimulants applied during pre-harvest period by
foliar spray [225]. The effects were evaluated on the “Staccato” cultivar, and the authors
found that all the treatments positively affected size, soluble solid content, pH, color,
antioxidant activity, polyphenol, and vitamin C content. Among the tested biostimulants,
glycine-betaine and SWE products showed the best results, in term of physiochemical,
nutritional, and nutraceutical parameters. In particular, authors found that cherries treated
with this biostimulant showed a higher content of neochlorogenic, p-coumaric, chlorogenic
acids, cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside, rutin, luteolin, and vitamin C.
These results were in correlation with a higher antioxidant capacity.

Sofia Correia et al. treated Skeena sweet cherry trees by repeated foliar spray applica-
tions of a biostimulant based on Ca, gibberellic acid, abscisic acid, salicylic acid, glycine
betaine, and SWE [15]. They measured the physiological and biochemical performance
for two consecutive years (2015–2016) and demonstrated that the biostimulant application
increased the physiological performance and water status of the trees. Among the different
formulations, the spray application of SWE was shown to be the best for increasing yield
and reducing cherry cracking as well as improving photosynthetic performance and leaf
metabolite content. Moreover, also maturity index and anthocyanin content in cherries
were strongly increased after the application of ABA-based biostimulant and SWE.

3.2.5. Strawberry (Fragaria ananassa)

For centuries, strawberries have been consumed mainly because of their sweet taste,
but the potential of this fruit is mainly related to its phytochemical composition. Indeed,
strawberries are a good source of vitamin C, anthocyanins, proanthocyanidins, and other
antioxidants, and its consumption is correlated to cardiovascular protection and anti-
inflammatory effects [241]. The results derived from the application of biostimulant aimed
to preserve, or increase, the nutritional and nutraceutical content of these fruits, were
largely investigated.

For example, Guido Lingua et al. in 2013 studied the effect of arbuscular mycorrhiza
colonization on the amount of anthocyanins, showing how the symbiosis could induce an
increase of TAC [59]. Moreover, the authors investigated the qualitative anthocyanin profile
via HPLC-MS/MS and discovered that Cy and Pg were the most varying anthocyanins. In
2020, Nadia Lombardi et al. studied the effects of treatments with three selected Trichoderma
strains (T22, TH1, and GV41) in strawberry plants, by measuring the productivity, primary
and secondary metabolites, and proteome of the formed fruits [227]. They reported that
the application of the biostimulant positively affected plant growth, increased fruit yield,
and favoured the selective accumulation of anthocyanins in the skin of red ripened fruits.
By performing HPLC analysis, they found that not all anthocyanins were equally affected
by the biostimulant application. In particular, only the glucoside and rutinoside forms
of Cy or Pg were affected by the treatment. With the aim to understand the mechanism
that led to a higher anthocyanin accumulation in the fruits, they performed proteomic
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analysis and demonstrated that the microbial inoculants highly affected the profile of
proteins associated with responses to stress/external stimuli, nutrient uptake, protein
metabolism, carbon/energy metabolism, and secondary metabolism. Moreover, bioinfor-
matic analysis revealed a concomitant modulation of different plant physiological processes
following the microbial inoculation. To this purpose, they found that in treated plants
there was an increased level of PAL, CHI, and other enzymes involved in anthocyanin
biosynthesis, meanwhile proteins catalyzing the transformation of secondary metabolites
into lignin derivatives, such as elicitor-activated genes, and isoflavone reductases were
down represented.

4. Conclusions

The application of plant biostimulants as agriculture practice represents a sustainable
way to reduce fertilizers and other chemicals, also reducing the environmental contami-
nation. This aspect increased the attention not only of the farmers but also of consumers,
who are more confident in sustainable foods because perceived safer and healthier. As
reported in this review, plant biostimulants are shown to be able to increase fruit quality
parameters in plant grown both in controlled and adverse conditions. However, compared
with the high number of published reports, few scientific papers were focused on fruit
quality in term of nutraceutical aspects, and in particular on a punctual class of bioactive
compounds, such as anthocyanins. Moreover, most part of the published papers simply
reports the effects of biostimulant applications on plants, but few have investigated their
potential mechanisms of action. Consequently, it is important to highlight the urgent need
for further studies that should be focused on the biostimulant chemical composition and on
the investigation of the biochemical and molecular pathways involved in their displayed
actions.
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207. Szczałba, M.; Kopta, T.; Gąstoł, M.; Sękara, A. Comprehensive insight into arbuscular mycorrhizal fungi, Trichoderma spp.
and plant multilevel interactions with emphasis on biostimulation of horticultural crops. J. Appl. Microbiol. 2019, 127, 630–647.
[CrossRef]

208. Santaniello, A.; Scartazza, A.; Gresta, F.; Loreti, E.; Biasone, A.; Di Tommaso, D.; Piaggesi, A.; Perata, P. Ascophyllum nodosum
seaweed extract alleviates drought stress in arabidopsis by affecting photosynthetic performance and related gene expression.
Front. Plant Sci. 2017, 8, 1362. [CrossRef]

209. Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-
promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable
agriculture. Front. Plant Sci. 2018, 9, 1473. [CrossRef] [PubMed]

210. Carmody, N.; Goñi, O.; Łangowski, Ł.; O’Connell, S. Ascophyllum nodosum extract biostimulant processing and its impact on
enhancing heat stress tolerance during tomato fruit set. Front. Plant Sci. 2020, 11, 807. [CrossRef] [PubMed]

211. Hara, M. Potential use of essential oils to enhance heat tolerance in plants. Z. Naturforsch. C. 2020, 75, 225–231. [CrossRef]
212. Mannino, G.; Nerva, L.; Gritli, T.; Novero, M.; Fiorilli, V.; Bacem, M.; Bertea, C.M.; Lumini, E.; Chitarra, W.; Balestrini, R. Effects of

different microbial inocula on tomato tolerance to water deficit. Agronomy 2020, 10, 170. [CrossRef]
213. Islam, M.T.; Gan, H.M.; Ziemann, M.; Hussain, H.I.; Arioli, T.; Cahill, D. Phaeophyceaean (Brown Algal) extracts activate plant

defense systems in arabidopsis thaliana challenged with phytophthora cinnamomi. Front. Plant Sci. 2020, 11, 852. [CrossRef]
[PubMed]

214. Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein
hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [CrossRef]

215. Bulgari, R.; Morgutti, S.; Cocetta, G.; Negrini, N.; Farris, S.; Calcante, A.; Spinardi, A.; Ferrari, E.; Mignani, I.; Oberti, R.; et al.
Evaluation of borage extracts as potential biostimulant using a phenomic, agronomic, physiological, and biochemical approach.
Front. Plant Sci. 2017, 8, 935. [CrossRef]

216. Casadesús, A.; Polo, J.; Munné-Bosch, S. Hormonal effects of an enzymatically hydrolyzed animal protein-based biostimulant
(pepton) in water-stressed tomato plants. Front. Plant Sci. 2019, 10, 758. [CrossRef] [PubMed]

217. Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84,
523–538. [CrossRef]

218. Van Eck, N.J.; Waltman, L. VOSviewer manual. Leiden Univ. Leiden 2013, 1, 1–53.
219. Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [CrossRef] [PubMed]
220. Passafiume, R.; Perrone, A.; Sortino, G.; Gianguzzi, G.; Saletta, F.; Gentile, C.; Farina, V. Chemical–physical characteristics,

polyphenolic content and total antioxidant activity of three Italian-grown pomegranate cultivars. NFS J. 2019, 16, 9–14. [CrossRef]
221. Deng, Q.; Xia, H.; Lin, L.; Wang, J.; Yuan, L.; Li, K.; Zhang, J.; Lv, X.; Liang, D. SUNRED, a natural extract-based biostimulant,

application stimulates anthocyanin production in the skins of grapes. Sci. Rep. 2019, 9, 2590. [CrossRef]

http://doi.org/10.1016/j.tifs.2011.04.006
http://doi.org/10.1002/ptr.5642
http://doi.org/10.1016/S0014-5793(03)00504-0
http://doi.org/10.2174/1389200214666131211160308
http://www.ncbi.nlm.nih.gov/pubmed/24329109
http://doi.org/10.1111/1541-4337.12024
http://doi.org/10.3109/03602532.2014.978080
http://doi.org/10.1079/NRR2005116
http://www.ncbi.nlm.nih.gov/pubmed/19079881
http://doi.org/10.1055/s-0043-106050
http://www.ncbi.nlm.nih.gov/pubmed/28395363
http://doi.org/10.3390/agronomy9060306
http://doi.org/10.3389/fpls.2018.01655
http://www.ncbi.nlm.nih.gov/pubmed/30483300
http://doi.org/10.3389/fpls.2014.00808
http://www.ncbi.nlm.nih.gov/pubmed/25653663
http://doi.org/10.3390/plants9010020
http://doi.org/10.3389/fpls.2017.00131
http://doi.org/10.1111/jam.14247
http://doi.org/10.3389/fpls.2017.01362
http://doi.org/10.3389/fpls.2018.01473
http://www.ncbi.nlm.nih.gov/pubmed/30405652
http://doi.org/10.3389/fpls.2020.00807
http://www.ncbi.nlm.nih.gov/pubmed/32670315
http://doi.org/10.1515/znc-2019-0233
http://doi.org/10.3390/agronomy10020170
http://doi.org/10.3389/fpls.2020.00852
http://www.ncbi.nlm.nih.gov/pubmed/32765538
http://doi.org/10.3389/fpls.2017.02202
http://doi.org/10.3389/fpls.2017.00935
http://doi.org/10.3389/fpls.2019.00758
http://www.ncbi.nlm.nih.gov/pubmed/31249580
http://doi.org/10.1007/s11192-009-0146-3
http://doi.org/10.3389/fpls.2020.00040
http://www.ncbi.nlm.nih.gov/pubmed/32117379
http://doi.org/10.1016/j.nfs.2019.06.001
http://doi.org/10.1038/s41598-019-39455-0


Agriculture 2021, 11, 212 24 of 25

222. Pohl, A.; Grabowska, A.; Kalisz, A.; Sekara, A. The eggplant yield and fruit composition as affected by genetic factor and
biostimulant application. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 929–938. [CrossRef]

223. Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of biostimulants for organic apple production:
Effects on tree growth, yield, and fruit quality at harvest and during storage. Front. Plant Sci. 2018, 9, 1342. [CrossRef] [PubMed]

224. Soppelsa, S.; Kelderer, M.; Testolin, R.; Zanotelli, D.; Andreotti, C. Effect of biostimulants on apple quality at harvest and after
storage. Agronomy 2020, 10, 1214. [CrossRef]

225. Gonçalves, B.; Morais, M.C.; Sequeira, A.; Ribeiro, C.; Guedes, F.; Silva, A.P.; Aires, A. Quality preservation of sweet cherry cv.
“staccato” by using glycine-betaine or Ascophyllum nodosum. Food Chem. 2020, 322, 126713. [CrossRef]

226. Caruso, G.; El-Nakhel, C.; Rouphael, Y.; Comite, E.; Lombardi, N.; Cuciniello, A.; Woo, S.L. Diplotaxis tenuifolia (L.) DC. Yield and
quality as influenced by cropping season, protein hydrolysates, and trichoderma applications. Plants 2020, 9, 697. [CrossRef]
[PubMed]

227. Lombardi, N.; Caira, S.; Troise, A.D.; Scaloni, A.; Vitaglione, P.; Vinale, F.; Marra, R.; Salzano, A.M.; Lorito, M.; Woo, S.L.
Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and
quality. Front. Microbiol. 2020, 11, 1364. [CrossRef]

228. Roussos, P.A.; Denaxa, N.; Damvakaris, T. Strawberry fruit quality attributes after application of plant growth stimulating
compounds. Sci. Hortic. 2009, 119, 138–146. [CrossRef]

229. Kok, D. Grape growth, anthocyanin and phenolic compounds content of early ripening Cv. Cardinal table grape (V. vinifera L.) as
affected by various doses of foliar biostimulant applications with gibberellic acid. Erwerbs Obstbau 2018, 60, 253–259. [CrossRef]

230. Parrado, J.; Bautista, J.; Romero, E.J.; García-Martínez, A.M.; Friaza, V.; Tejada, M. Production of a carob enzymatic extract:
Potential use as a biofertilizer. Bioresour. Technol. 2008, 99, 2312–2318. [CrossRef]

231. Rodrigues, M.; Baptistella, J.L.C.; Horz, D.C.; Bortolato, L.M.; Mazzafera, P. Organic plant biostimulants and fruit quality—A
review. Agronomy 2020, 10, 988. [CrossRef]

232. Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical
properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5,
375. [CrossRef]

233. Solverson, P. Anthocyanin bioactivity in obesity and diabetes: The essential role of glucose transporters in the gut and periphery.
Cells 2020, 9, 2515. [CrossRef]

234. Wally, O.S.D.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I.; Abrams, S.R.; Prithiviraj, B. Regulation of phytohor-
mone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga
Ascophyllum nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [CrossRef]
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