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Abstract

Many long-distance migratory birds use habitats that are scattered across continents and

confront hazards throughout the annual cycle that may be population-limiting. Identifying

where and when populations spend their time is fundamental to effective management. We

tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie

Delta and Hudson Bay) with satellite transmitters to document the structure of their annual

cycles. The two populations differed in their use of migratory pathways and their seasonal

schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different

autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct

migrations along the same route during autumn and spring. The two populations overlap on

the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the

breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging

areas earlier compared to whimbrels from Hudson Bay. For both populations, migration

speed was significantly higher during spring compared to autumn migration. Faster migration

was achieved by having fewer and shorter stopovers en route. We identified five migratory

staging areas including four that were used during autumn and two that were used during

spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We doc-

umented dozens of locations where birds stopped for short periods along nearly all migration

routes. The consistent use of very few staging areas suggests that these areas are integral to

the annual cycle of both populations and have high conservation value.

Introduction

Each year billions of birds make seasonal movements in order to improve survival and breed-

ing success [1]. Breeding areas, winter areas, migratory staging areas and the routes that link
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them together represent an interconnected network and a set of constraints that imposes struc-

ture on the annual cycle of migrants. The set of constraints itself is in dynamic flux exerting

pressure on migrants to adjust and reshape migratory strategies over time [e.g., 2–4]. Because

connections within migratory networks are directional, conditions within one area may carry

over and influence the energy budget or dictate the movement phenology within downstream

areas [e.g., 5, 6]. Identifying these interdependencies requires an understanding of the basic

architecture of the network. Mapping the annual cycle is a first step toward identifying critical

nodes and bottlenecks throughout the network and understanding how migration systems

have evolved and currently operate [7].

Hundreds of shorebird populations are experiencing ongoing declines on a global scale [8–

10]. Population declines are particularly dramatic for species using the Western Atlantic Fly-

way with 65% of populations with recent trend data believed to be declining [11]. Among oth-

ers, suggested causes for declines include mortality related to hunting [12, 13] or increased

predation pressure [14, 15] impacts on foraging within staging areas due to human disturbance

[16, 17] or prey declines [e.g., 18, 19] and deteriorating conditions on the breeding grounds

[20, 21]. Understanding the specific challenges that populations confront and where they

occur is fundamental to effective management.

Whimbrels (Numenius phaeopus) are large holarctic waders that migrate over large geo-

graphic areas [22], are capable of extreme flights [23, 24] and utilize relatively few staging areas

during migration [25, 26]. The two populations (Mackenzie Delta and Hudson Bay) that utilize

the Western Atlantic Flyway winter together along the northern Coast of South America but

use separate autumn migration routes that differ in exposure to tropical cyclones [27]. Whim-

brels exhibit delayed recruitment and have low reproductive potential [12]. A recent assess-

ment suggests that adult mortality rates exceed sustainable levels [28]. Surveys within a spring

staging area [29] and within the primary winter grounds [30] indicate that at least one of the

populations using the Western Atlantic Flyway has experienced significant declines over the

past three decades.

Identifying where and when populations spend their time is a first step toward understand-

ing exposure to hazards and developing conservation strategies to overcome them. In this

study, we used satellite transmitters to track adult Whimbrels from two breeding populations

to explore the structure of their annual cycles. Our objectives included (1) documenting popu-

lation-specific seasonal schedules, (2) mapping autumn and spring migration pathways for the

two populations, (3) delineating significant migratory staging area and stopover sites and (4)

identifying locations of overlap between the populations.

Methods

Field methods

We captured 34 whimbrels (Table 1) between 2008 and 2018 on migratory staging areas along

the lower Delmarva Peninsula in Virginia, USA (n = 13) (37.398˚ N, 75.865˚ W), along the

coast of Georgia, USA (n = 8) (31.148˚ N, 81.379˚ W), along the Acadian Peninsula in New

Brunswick, Canada (n = 3) (47.973˚ N, 64.509˚ W) as well as on the nesting ground near the

Mackenzie River, Northwest Territories, Canada (n = 10) (69.372˚ N, 134.894˚ W). All birds

were aged as adults by plumage [31, 32] and were banded with United States Geological Survey

tarsal bands and coded leg flags. Sex of captured birds was not determined.

We fitted all birds with satellite transmitters called Platform Transmitter Terminals (PTTs)

using a modification of the leg-loop harness [33, 34]. Instead of elastic cord, we used Teflon1

ribbon (Bally Ribbon Mills, Bally, Pennsylvania, USA) that was fastened with brass rivets or

crimps [23]. We glued transmitters to a larger square of neoprene to elevate it above the body
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and prevent the bird from preening feathers over the solar panels. The transmitter package

was below 3% of body mass (measured at the time of deployment (�x = 484.5±17.1) for all indi-

viduals tracked in this study. The PTTs used in this study were 9.5 g PTT-100 (n = 24) or 5.0 g

PTT-100 (n = 10) solar-powered units produced by Microwave Telemetry, Inc. (Columbia,

Maryland, USA).

Tracking

Birds were located using satellites of the National Oceanic and Atmospheric Administration

and the European Organization for the Exploitation of Meteorological Satellites with onboard

tracking equipment operated by Collecte Localisation Satellites (CLS America, Inc., Largo,

Table 1. Summary information for adult Whimbrels tracked with satellite transmitters throughout the Western Atlantic Flyway (2008–2018).

Whimbrel Transmitter size (g) Breeding location Spring Breeding Autumn Winter

040166 9.5 Hudson Bay 0 0 1 0

050121 9.5 Hudson Bay 1 1 1 1

050122 9.5 Hudson Bay 0 0 1 0

074854.2 9.5 Hudson Bay 2 2 3 3

084206 9.5 Hudson Bay 2 2 2 2

085947 9.5 Hudson Bay 1 1 0 0

088039 9.5 Hudson Bay 1 1 1 0

088040 9.5 Hudson Bay 0 0 1 1

088041.1 9.5 Hudson Bay 1 1 0 0

088042.2 9.5 Hudson Bay 1 1 1 0

088044 9.5 Hudson Bay 1 1 1 0

088045 9.5 Hudson Bay 1 1 1 1

088046 9.5 Hudson Bay 0 0 1 0

098354 9.5 Hudson Bay 1 1 2 1

105874 9.5 Hudson Bay 4 4 4 4

117299 9.5 Hudson Bay 2 2 2 1

117300 9.5 Hudson Bay 2 1 1 1

123494 9.5 Hudson Bay 1 1 1 0

128483 5 Hudson Bay 1 1 1 0

074854.1 9.5 Mackenzie River 2 2 2 2

074854.3 9.5 Mackenzie River 1 2 2 1

088043.1 9.5 Mackenzie River 1 0 1 1

088043.2 9.5 Mackenzie River 4 4 4 4

103520 5 Mackenzie River 2 2 2 2

103521 5 Mackenzie River 1 1 1 1

103522.1 9.5 Mackenzie River 2 2 2 2

103522.2 5 Mackenzie River 1 2 2 2

105875 9.5 Mackenzie River 1 0 0 0

123745 5 Mackenzie River 1 2 2 1

123746 5 Mackenzie River 1 1 1 1

123748 5 Mackenzie River 2 2 2 2

133734 5 Mackenzie River 0 1 1 1

133735 5 Mackenzie River 4 5 5 4

133736 5 Mackenzie River 0 1 1 1

Numbers denote how many years for which each individual was tracked during a given season.

https://doi.org/10.1371/journal.pone.0260339.t001
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Maryland, USA) [35]. Transmitters were programmed to operate with a duty cycle of 24 h off

and 5 h on (n = 10) or 48 h off and 10 h on (n = 24) and collected 1–34 (�x = 5.48±0.07) locations

per cycle. Locations in latitude and longitude decimal degrees, date, time, and location error

were received from CLS America within 24 h of satellite contact with PTTs. Locations were esti-

mated by the Advanced Research and Global Observation Satellite (ARGOS) system (www.

Argos-system.org), which uses a Doppler shift in signal frequency and calculates a probability

distribution within which the estimate lies. The standard deviation of this distribution gives an

estimate of the location accuracy and assigns it to a “location class” (LC): LC3 =<150 m,

LC2 = 150–350 m, LC1 = 350–1000 m, LC0>1000 m, LCA = location based on 3 messages and

has no accuracy estimate, LCB = location based on 2 messages and has no accuracy estimate,

and LCZ = location process failed. We used LC classes 1–3 to determine whimbrel locations.

Seasonality

We used tracking data to subdivide the annual cycle into four seasons, including autumn migra-

tion, winter, spring migration, and breeding. Although migration may include fueling on breed-

ing or winter territories before departure [36], here we consider the onset of migration to be

when birds made decisive movements away from winter or breeding territories. In order to

identify these breakout movements, we used locations on the breeding and winter territories to

develop centroids and consider the first arrival or departure movement to be the first location

that exceeded 2 standard deviation units beyond the mean of movements around centroids. We

consider dates of arrival and departure to coincide with these locations during times when the

transmitter was active. To account for cases where departure and arrival times occurred outside

the transmitter’s duty cycle, we calculated the speed between the arrival or departure location

and the last or next flight location. If the speed was less than 2 SD below the mean whimbrel

flight speed (�x = 14.7±0.3 m/s, n = 45), we interpolated arrival and departure times using the

mean whimbrel flight speed and great circle distance between the two points. Departure was

abrupt and we recorded no “false starts” of birds leaving breeding and winter areas and then

returning before resuming migration. We delineated the length of each season, in days, for indi-

viduals based on their dates of arrival and departure to and from breeding and wintering

grounds each year, and calculated summary statistics across all individuals and years.

Migration pathways

We used tracking data to delineate migratory pathways during autumn and spring for each indi-

vidual. We considered pathways to include the route traveled between the departure location

from a stationary period and the arrival location to the next stationary period, but did not include

local movements to and from roosting and foraging locations at stopover and staging sites. Due

to the duty cycle of the transmitters our dataset had temporal gaps in coverage. We filled these

gaps using continuous-time correlated random walk (CRAWL) models [37, 38] that allowed us

to interpolate a pathway for each individual. We measured autumn and spring migration lengths

(km) along the interpolated pathway from the departure to the arrival location. We estimated the

duration of the migration as the elapsed time between departure and arrival including any stops

along the route. We estimate the migration speed toward migratory destinations as the migration

length/elapsed time (km/d). Centroids and distances between departure and arrival locations

were calculated with the geosphere package [39] in Program R [40].

Staging and stopover locations

We used tracking data to delineate staging and stopover areas used by whimbrels during

migration. We adopted the terminology of Warnock [41] to differentiate staging areas and

PLOS ONE The annual cycle for whimbrel populations using the Western Atlantic Flyway

PLOS ONE | https://doi.org/10.1371/journal.pone.0260339 December 31, 2021 4 / 13

http://www.argos-system.org/
http://www.argos-system.org/
https://doi.org/10.1371/journal.pone.0260339


stopover areas. We consider staging areas to be annually used destinations that 1) have high

resource densities to allow for rapid refueling rates, 2) have long distances (>1,000 km) to the

next destination, 3) support large portions of the population where 4) birds stay for long

(weeks) periods and 5) exhibit high site fidelity between years. We consider stopover areas to

be unplanned “emergency” areas where conditions force birds to stop that 1) support small

portions of the population where 2) birds stay for short (days) periods or 3) exhibit low site

fidelity between years. We associated stopover areas with their upstream staging area. We

recorded the number of stopover areas used by each individual during all years and associated

with each staging area. We used the same approach as above for breeding and winter areas to

determine the length of stay within both staging area and stopover sites.

Statistics

We developed descriptive statistics including means and standard errors for seasons (initiation

dates and duration), migration (distance, duration and migration speed), staging areas (arrival

dates and duration of stay) and stopover areas (number per migration leg and duration of

stay) and compared these metrics between populations and seasons as appropriate using two-

tailed t-tests with Bonferroni-corrected p-values. Several birds made more than one migration

in different years and we consider these to be independent samples.

Ethics statement

All birds were captured and handled under the Institutional Animal Care and Use Committee

protocol IACUC-2017-04-18-12065 of The College of William and Mary, Environment Can-

ada Animal Care Committee protocols EC-PN-12-006, EC-PN-13-006, EC-PN-14-006,

Mount Allison University Animal Care Committee protocol 15–14, and the Government of

the Northwest Territories Wildlife Care Committee protocol NWTWCC2014-007.

Results

Phenology

The temporal structure of the annual cycle varied between populations, with the Mackenzie

Delta population exhibiting earlier dates of seasonal transition (Table 2). The Mackenzie Delta

population arrived on the breeding grounds an average of 4 days earlier, left for autumn

migration 15 days earlier, arrived on the winter grounds 19 days earlier and left the winter

grounds 14 days earlier compared to the Hudson Bay population. Although the structure of

the annual cycle was generally consistent between populations, some key differences are appar-

ent. Hudson Bay birds were resident on the breeding grounds for a longer period (46.4 ± 3.3

compared to 36.2 ± 4.0 days) and had a shorter period (47.1 ± 3.5 compared to 53.7 ± 2.1 days)

Table 2. Mean initiation dates of seasons for whimbrels from Mackenzie Delta and Hudson Bay breeding populations as determined by satellite tracking between

2008 and 2018.

Mackenzie Delta Hudson Bay

Season n (x) Mean ± SE n (x) Mean ± SE t p
Breeding 10 (18) 31 May ± 2.5 15 (21) 3 June ± 4.24 0.565 0.576

Autumn migration 13 (26) 7 July ± 2.0 11 (17) 22 July ± 3.0 3.940 <0.001

Winter 13 (25) 30 August ± 3.3 9 (15) 18 September ± 4.1 3.446 0.002

Spring migration 13 (21) 6 April ± 1.6 7 (10) 20 April ± 2.8 4.427 <0.001

Sample sizes represent number of individuals (total number of seasons) on which initiation dates were based.

https://doi.org/10.1371/journal.pone.0260339.t002
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devoted to spring migration when compared to Mackenzie Delta birds. Although the longer

period of residency on the breeding grounds may reflect birds that staged in place prior to

autumn migration this possibility does not fully account for the differences in schedules. The

span between arrival on the breeding grounds and arrival on the winter grounds was 12 days

longer for Hudson Bay birds (107 vs 91 days) compared to Mackenzie Delta birds suggesting

some fundamental differences in the summer and autumn seasons. Winter dominated the

annual cycle for both populations averaging around 7.3 months or 60% of the year for both the

Mackenzie Delta and Hudson Bay populations.

Migratory pathways

Adult birds from the Mackenzie Delta and Hudson Bay breeding populations follow distinctly

different migratory pathways such that they are separated during much of the year. Following

the breeding season, birds from Mackenzie Delta staged around the Beaufort Sea, flew east

across the continent reaching terminal staging areas primarily in Atlantic Canada but also in

Hudson and James Bays (Fig 1A). Nearly all birds made transoceanic flights to winter territo-

ries along the east coast of northern South America. An exception to this pattern is a bird that

staged in Hudson Bay and made direct flights to a winter territory on St. Croix or to the South

Fig 1. Stylized, Composite Maps of The Annual Cycle for the Mackenzie Delta (1a) and the Hudson Bay (1b) Whimbrel Populations. Information represents a

synthesis of multiple years of tracking data. Dots and diamonds represent centroids of locations from periods when birds were not flying. Figure was created by

one of the authors using ArcGIS 10.4.1. Basemap provided by: ESRI, Digital Globe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,

AeroGRID, IGN, and the GIS User Community.

https://doi.org/10.1371/journal.pone.0260339.g001
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Atlantic staging area before flying to St. Croix. From the winter grounds, birds used two major

routes to reach the breeding grounds including a northern route with staging on the south

Atlantic Coast and a southern route with staging on the western Gulf Coast. Birds staging

along the Atlantic Coast flew toward the Great Lakes and then west to the Mackenzie Delta.

Birds staging along the Gulf Coast flew directly to the Mackenzie Delta over the Great Plains

and skirting the eastern flank of the Rocky Mountains. An exception to this southern route is a

bird that flew across northern Mexico to stage on the Gulf of California for two consecutive

years and flew north along the Pacific Flyway to the Mackenzie Delta.

In contrast to the Mackenzie Delta population, whimbrels breeding within the Hudson Bay

lowlands flew similar routes to and from the breeding and winter grounds (Fig 1B). Following

the breeding season, birds either staged within the breeding grounds or moved to Hudson and

James Bays to stage before flying south to stage along the Atlantic Coast. Birds flew from the

Atlantic Coast across the Caribbean Basin to the northern coast of South America. Many birds

made landfall on the coast of South America well west of their winter grounds and slowly

moved east until reaching their final destination. From the winter grounds, birds retraced

their autumn route north to stage along the Atlantic Coast before flying over the Great Lakes

and on to Hudson Bay.

Differences in the distance between breeding and winter grounds and migratory routes

resulted in differences between populations in overall migration distance, duration and the

migration speed toward spring or autumn destinations (Table 3). Within populations, spring

and autumn migration distances were not distinguishable for Hudson Bay (t16 = 0.9, p = 0.38)

or Mackenzie Delta (t35 = -0.3, p = 0.75) despite different seasonal pathways for the latter.

However, both spring (t23 = 4.1, p< 0.001) and autumn (t28 = 4.4, p< 0.001) distances were

different between populations. The duration of migration was similar between populations

during the autumn (t28 = -0.5, p = 0.64) but differences were notable during spring (t23 = 1.9,

p = 0.06). Though mean migration speed was higher for both populations during spring

(Table 3), the difference was not significant (Mackenzie Delta: t35 = -1.8, p = 0.08 and Hudson

Bay: t16 = -2.0, p = 0.06). Mackenzie Delta migration speed was higher than Hudson Bay dur-

ing autumn (t28 = 2.3, p = 0.03) but not spring (t23 = 1.1, p = 0.28). For all whimbrels (both

populations combined), migration speed was significantly (t53 = 2.4, p = 0.02) higher during

the spring (206.9±10.47) compared to the autumn (173.8±8.79).

Staging areas and stopover sites

We identified five migratory staging areas used by whimbrels (Table 4). All areas were used

during at least one season by the Mackenzie Delta population but only two were used by the

Hudson Bay population. Fidelity to staging areas was very high with 98% (N = 52) of birds that

Table 3. Autumn and spring migration statistics for whimbrels from the Mackenzie Delta and Hudson Bay breeding populations as determined by satellite tracking

(2008–2018).

Migration n (x) Distance (km) Duration (d) Migration Speed (km/d)

Mackenzie Delta

Autumn 12(21) 11,332±333.8 64±3.6 186±10.5

Spring 9(16) 11,518±487.7 55±2.1 216±12.1

Hudson Bay

Autumn 5(9) 8,989±236.3 68±9.0 145±11.7

Spring 6(9) 8,581±389.2 47±3.5 191±19.5

Sample sizes represent number of individuals (total number of seasons) on which values were based.

https://doi.org/10.1371/journal.pone.0260339.t003
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used a specific areas in one year also using the area during the following year. The single excep-

tion was a Mackenzie Delta bird that staged around Hudson Bay one year but over flew the

area in the following year. The structure of use was simple and straightforward. During the

autumn Mackenzie Delta birds staged around the Beaufort Sea and either flew directly (31.6%

of events, n = 19) to Atlantic Canada and then on to South America or to Hudson Bay (68.4%

of events). Birds that staged in Hudson Bay either flew straight to South America (30.1% of

events, n = 13), on to Atlantic Canada and then on to South America (46.2% of events) or to

the South Atlantic and on to South America (23.1% of events). Hudson Bay birds staged

around the Bay and either made attempts to fly nonstop (15.4% of events) to South America or

flew (84.6% of events) to the South Atlantic Coast of the United States to stage before flying to

South America. During the spring both populations used single staging areas between winter

and breeding areas with Mackenzie Delta birds being split between staging areas along the

South Atlantic Coast and the Gulf Coast of the United States and Hudson Bay birds using the

South Atlantic Coast. Within staging areas, birds were generally scattered. Exceptions were the

South Atlantic Coast where birds were concentrated along the Delmarva Peninsula in Virginia

and along the coasts of South Carolina and Georgia and along the Gulf Coast where birds were

concentrated along the northern coast or Texas and western Louisiana and along the northern

coast of Mexico. Arrival times on staging areas and duration of events varied between popula-

tions and areas (Table 4). Although notable, most differences were not significant likely due to

low statistical power. An exception is that Mackenzie Delta birds arrive in spring along the

South Atlantic Coast significantly (t19 = 4.4, p< 0.001) earlier than Hudson Bay birds.

We documented locations where birds stopped for short periods of time along all migration

routes except the transoceanic route from Atlantic Canada to South America, where potential

stopover sites do not exist (Fig 1A and 1B). The mean number of stopovers per individual and

the stopover length varied between seasons and migration legs (Table 4). Notable clusters of

stopover sites include the upper Great Plains for Mackenzie Delta birds during the spring, the

Great Lakes for Hudson Bay birds during the spring, around the Beaufort Sea and associated

Table 4. Use of staging and stopover sites by whimbrels from the Mackenzie Delta and Hudson Bay breeding populations as determined by satellite tracking (2008–

2018).

Staging Areas n (x) Arrival Date Staging Duration (d) Post-staging Stopovers (N) Stopover Duration (d)

Mackenzie Delta

Autumn

Beaufort Sea 10 (17) 04 Jul±1.65 7.6±1.25 1.3±0.31 1.8±0.40

Hudson Bay 10 (16) 15 Jul±1.82 18.0±2.58 0.1±0.08 0.6±0.00

Atlantic Canada 12 (19) 29 Jul±2.41 19.3±2.52 0 0

Spring

South Atlantic 3(5) 17 Apr±5.84 35.0±6.53 2.8±1.18 1.0±0.37

Gulf Coast 9(16)1 11 Apr±2.19 25.0±2.51 2.4±0.75 2.5±0.45

Hudson Bay

Autumn

Hudson Bay 5 (7) 18 Jul±9.25 15.5±3.66 1.8±0.75 9.5±3.94

South Atlantic 8 (13)1 02 Aug±4.11 28.4±1.79 1.0±0.02 12.4±2.94

Spring

South Atlantic 7(10) 29 Apr±3.77 29.2±3.96 1.2±0.18 1.9±0.91

Sample sizes represent number of individuals (total number of seasons) on which values were based. Values represent means±SE. Stopovers reflect events recorded

during flights moving away from staging (see Fig 1A and 1B).
1Tracking of one bird ended within staging area so sample size for duration is one less.

https://doi.org/10.1371/journal.pone.0260339.t004
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waterways for Mackenzie Delta birds during autumn and throughout the Caribbean Basin in

the autumn where Hudson Bay birds are put down by storms [27].

Discussion

Tracking whimbrels with satellite transmitters has revealed differences in the annual cycle

between the Mackenzie Delta and Hudson Bay breeding populations in terms of both the tim-

ing of transitions between seasons and space use. Mackenzie Delta whimbrels left the breeding

grounds, arrived on winter grounds and left winter grounds earlier than whimbrels breeding

around Hudson Bay. Mackenzie Delta whimbrels followed a long loop migration pathway with

different autumn and spring routes while Hudson Bay whimbrels followed a shorter more

direct pathway between breeding and winter grounds with similar autumn and spring routes.

Both populations had higher rates of migration during spring compared to autumn, though the

difference was not significant. More rapid migration was facilitated by a very low number of

short stopovers between terminal staging areas and the breeding grounds. The two populations

share the winter grounds along the northern coast of South America. The only other area of

consistent overlap during the annual cycle appears to be along the South Atlantic Coast in the

spring where a portion of the Mackenzie Delta birds mix in to stage with Hudson Bay birds.

Tracking information has clarified patterns of space use. Historically, we believed that

North America supported two whimbrel breeding populations including an eastern popula-

tion (Hudson Bay) that migrated along the Western Atlantic Flyway and a western population

(Mackenzie Delta and Alaska) that migrated along the Pacific Flyway [42]. Through this lens

we interpreted birds that appeared in Atlantic Canada in autumn as migrants from Hudson

Bay and birds that appeared later along the South Atlantic Coast as the same birds. Hudson

Bay birds were believed to leave the breeding grounds, fly to Atlantic Canada to feed on berries

in late summer, fly to the South Atlantic Coast to feed on fiddler crabs, continue down the

coast to Florida where they would depart and fly over the Caribbean Basin to South America

[43]. We now know that North America supports at least three whimbrel breeding populations

including Hudson Bay, Mackenzie Delta and Alaska. Hudson Bay birds fly south from the

breeding grounds to stage along the South Atlantic Coast or directly to South America [25].

The birds that stage in Atlantic Canada are from the Mackenzie Delta. These birds stage for an

extended period and make a nonstop, transoceanic flight to South America.

Birds using different migration routes and staging areas face different sets of constraints

that shape respective schedules [1]. Mackenzie Delta whimbrels left the breeding grounds

more than two weeks earlier than Hudson Bay whimbrels. Whether the early departure reflects

the need to take advantage of a window of favorable tail winds to reduce energy expenditure

on their flight across the continent, the need to match their arrival in Atlantic Canada to the

ripening of the rich berry community required to fuel their transoceanic flight [22, 44], the

need to take advantage of a window of favorable winds in their flight across the Atlantic Ocean

[45, 46] or the need to establish winter territories before the arrival of competitors from Hud-

son Bay [47, 48] remains unclear. Hudson Bay whimbrels left breeding areas later and spent

longer periods within terminal staging areas despite flying shorter distances to South America.

It is possible that contending with constraints imposed by tides [49] and digestive bottlenecks

[50] associated with consuming fiddler crabs require longer periods to achieve leaving condi-

tion compared to birds in Atlantic Canada feeding in non-tidal habitats on easily digestible

fruits. It is also possible that birds from Hudson Bay delayed their flight across the Caribbean

Basin to avoid the peak of hurricane activity [27].

The short Arctic season places high pressure on migrants to arrive before or soon after hab-

itats thaw for breeding [2, 51]. Birds that arrive early on the breeding grounds may have more
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time to replenish nutrient reserves [52] attain the best territories [53], have a longer window to

renest in the event of early failure [54] and tend to have higher young survival [55, 56].

Throughout their annual schedule, Mackenzie Delta and Hudson Bay whimbrels reached their

greatest synchrony (mean arrival differ by 4 days) in their arrival on the breeding grounds.

Since Mackenzie Delta birds must complete a longer flight (mean distance traveled differs by

2937 km) between the South Atlantic Coast and their breeding grounds compared to Hudson

Bay they may require a larger fuel load at departure. Mackenzie Delta birds appear to insure

they reach an adequate leaving condition by a “date certain” by leaving the winter grounds ear-

lier, arriving along the South Atlantic Coast earlier and staging longer than Hudson Bay birds.

Of all the staging periods throughout the annual cycle, the terminal spring staging event is the

longest for both populations. Presumably, this extended period allows for preparations to both

complete their terminal flight to the breeding grounds and to arrive in adequate breeding

condition.

A wide variety of shorebirds have been shown to achieve a higher migration speed toward

the breeding grounds in the spring compared to away from the breeding grounds in autumn

[57] suggesting high selective pressure for birds to be present for the onset of the short breed-

ing season compared to the long winter season. Both Mackenzie Delta and Hudson Bay whim-

brels migrated faster during spring compared to autumn with differences between the two

seasons averaging 30 and 46 km/d faster for the two populations respectively. Both populations

were able to achieve higher migration speeds during the spring by having fewer and shorter

stopovers en route. This pattern is consistent with predictions of optimal migration [58].

Increasing fueling rates and/or reducing stopover events is often more beneficial since increas-

ing flight speed requires greater power and fuel consumption, thus compromising condition

upon arrival.

Although whimbrels range over large geographic areas during the course of their annual

cycles they are capable of long flights [23, 24] and appear to use this capability to reach and

exploit a small set of staging areas for which they have high fidelity. The consistent use of rela-

tively few areas suggests that these areas are integral to their annual cycle and have high con-

servation value. Of particular significance appears to be terminal spring staging areas

including the South Atlantic and Gulf Coasts where birds stage for long periods before moving

on to breeding grounds. These two areas appear to be strategically important population bot-

tlenecks that should be prioritized for conservation.
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